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Chapter 1

Introduction

What we are generally concerned with is the scattering of an incoming wave at an
inhomogeneous medium. Interior transmission eigenvalues appear in that context
and the question whether they exist is of importance to determine whether certain
methods of reconstructing the scattering object are guaranteed to succeed [4]. As
mentioned in [3] there are also concepts that use knowledge about the distribution of
interior transmission eigenvalues to directly gather information about the scattering
object.

Our goal is to prove that under certain conditions interior transmission eigen-
values exist, but only as isolated points. Points of reference that are of utmost
importance to this end are the research papers [3] and [9]. We will either mimic
their proofs or work them out in greater detail in the central chapters 3 and 4
where we tackle the necessary details for achieving our aforementioned goal. Be-
fore that we will be discussing the basics needed for this in chapter 2. Chapter
5 will then cover some loose ends and provide some exemplary analysis in a more
specific environment.

Definitions 1.1 and 1.2 set the stage and the quantities defined in them will have
the properties attributed to them there throughout the entire thesis unless stated
otherwise.

Definition 1.1. Let D ⊆ R2 be a bounded domain (i.e. connected and open) of
class C2 with connected complement. Furthermore let p, q ∈ L∞(D) such that there
exists a constant q0 > 0 with q(x) ≥ p(x) + q0 ≥ q0 for almost all x ∈ D.

Keeping in mind the affinity to the scattering problem it makes sense to visualize
the variables in this definition as physical parameters.
p describes the index of refraction for some kind of background medium and q

the index of refraction for the actual scattering object. q0 can be imagined as a
minimum requirement for contrast as q − p is bounded away from zero by it.
D contains the scatterer. It is defined to be a subset of R2 which means we

are restricting ourselves to the two-dimensional problem. I am not aware that
examining the three-dimensional problem would pose serious additional difficulties,
however.
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Chapter 1 Introduction

The smoothness condition ‘class C2’ means that the boundary can locally be
written as a twice continuously differentiable function after an adequate transfor-
mation of the coordinate system. This is needed to use some embedding theorems
concerning Sobolev spaces that will prove to be very helpful, but could most likely
be slightly weakened without destroying the validity of the theorems. While the
boundedness of D seems like a strong restriction from a theoretical point of view,
one has to keep in mind that boundedness of the scatterer is not much of a re-
striction when the scatterer is an actual physical object, like a patient in a medical
imaging device or a test specimen subjected to non-destructive testing techniques.

Definition 1.2. λ > 0 is called interior transmission eigenvalue if there exist
nontrivial u,w ∈ L2(D) such that

1. u− w ∈ H2
0 (D)

2. ∆u+ λ(1 + q)u = 0 in D

3. ∆w + λ(1 + p)w = 0 in D

4. u = w and ∂u
∂ν

= ∂w
∂ν

on the boundary ∂D of D

whereas 2. and 3. have to be understood in the weak sense, which means that

0 =

∫∫
D

u · (∆ + λ(1 + q))Ψ dx ∀ Ψ ∈ H2
0 (D) and

0 =

∫∫
D

w · (∆ + λ(1 + p))Ψ dx ∀ Ψ ∈ H2
0 (D) respectively.

All of the aforementioned functions and function spaces are required to be real
and will be properly defined in due time.
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Chapter 2

Preliminaries

This chapter is devoted to the foundation for our proofs and calculations and in-
cludes some general definitions and theorems, mostly from functional analysis. The
intention here is not to construct a complete analytical framework from scratch,
but to recall some definitions and well-known facts so we have them readily avail-
able later with suitable notation and level of detail for our purposes. Furthermore
stating theorems in their most general form is not the goal either. In favor of added
consistency we will for example state most theorems for Banach- and Hilbert spaces,
even if the theorems were also true in less demanding spaces.

For the proofs of the essential theorems the reader will mostly be referred to one
of the textbooks I used while writing. Whenever we prove something by ourselves
in this chapter, it is likely not to stress the importance of that particular statement,
but rather because the statement is uncommon in that exact formulation. There
are some exceptions to this rule, though.

As far as our definitions are concerned, these are intended to be as complete as
possible without taking up too much space. I tried to avoid situations where the
reader might be unsure what a given object is, but defining everything, no matter
how basic, was obviously not the way to go either. Hopefully a satisfactory balance
between completeness and clarity has been found.

2.1 From norms to Hilbert spaces

The source for all of the definitions in this section is [12], they are however not
taken word for word. We take the knowledge what a vector space, eigenvalues and
eigenvectors are for granted and proceed to recall the definition of norms and inner
products.

Definition 2.1. Let X be a vector space over F ∈ {R,C}.
A mapping ‖.‖ : X → R is called a norm if it satisfies

‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0

‖αx‖ = |α|‖x‖ Positive homogeneity

‖x+ y‖ ≤ ‖x‖+ ‖y‖ Triangle inequality
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Chapter 2 Preliminaries

for all α ∈ F and all x, y ∈ X.
A vector space with a norm is called a normed vector space.

Definition 2.2. Let X be a vector space over F ∈ {R,C}.
A mapping 〈., .〉 : X ×X → F is called an inner product if it satisfies

〈x1 + αx2, y〉 = 〈x1, y〉+ α〈x2, y〉 Linearity

〈x, y〉 = 〈y, x〉 (Conjugate) Symmetry

〈x, x〉 ≥ 0, 〈x, x〉 = 0 ⇐⇒ x = 0 Positive definiteness

for all α ∈ F and all x, y, x1, x2 ∈ X.
A vector space with an inner product is called an inner product space.

Remark 2.3. In Definition 2.2 the use of the relation ‘ ≥’ implicitly defines that the
numbers on both sides of the relation must be on the real axis if they are otherwise
possible to be anywhere in C. This procedure applies with ‘ ≥’ as well as with ‘ >’,
‘ <’ and ‘ ≤’ everywhere in this thesis, in particular also in Definition 1.2. The
complex conjugate of a real number is defined to be the number itself. This holds still
true, if the field that we are currently working in is not even C to begin with, which
allows us to simultaneously treat the real and the complex case for some problems.

Recall that if we have an inner product we can define a norm through

‖x‖ :=
√
〈x, x〉

(see [12, Lemma 6.20] for a short proof). If not specifically stated otherwise we
always think of this norm when talking about the norm of a vector in an inner
product space.

A very well-known device that is essential to the proof that
√
〈x, x〉 is a norm,

but also is interesting on it’s own is the Cauchy-Schwarz inequality. We cite it from
[12, Lemma 6.20].

Lemma 2.4. Let X be an inner product space.
Then the Cauchy-Schwarz inequality

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 = ‖x‖2‖y‖2

is valid for all x and y in X.

Proof. Let x, y ∈ X. Then

0 ≤ 〈x− 〈x, y〉〈y, y〉y, x−
〈x, y〉
〈y, y〉y〉

= 〈x, x〉 − 〈x, y〉〈y, y〉 〈y, x〉 −
〈x, y〉
〈y, y〉 〈x, y〉+

〈x, y〉〈x, y〉
〈y, y〉2 〈y, y〉

= 〈x, x〉 − |〈x, y〉|
2

〈y, y〉

10



2.2 On operators

from where the Cauchy-Schwarz inequality follows by adding |〈x,y〉|
2

〈y,y〉 on both sides

and then multiplying with 〈y, y〉.

Definition 2.5. Let X be a normed vector space.
When we say a sequence (xn)n∈N ⊂ X converges to x ∈ X, we mean norm conver-
gence, i.e.

‖xn − x‖ → 0

and write xn → x. When we say (xn)n∈N is bounded, then we mean that (‖xn‖)n∈N
is bounded as a sequence in R. We call (xn)n∈N a Cauchy sequence, if it has the
property

∀ ε > 0 ∃ N ∈ N : ‖xn − xm‖< ε ∀ n,m > N

Last but not least we define the two types of vector spaces that are most impor-
tant for our proofs and calculations.

Definition 2.6. A normed vector space X is called complete, if every Cauchy
sequence (xn)n∈N ⊂ X converges to some x ∈ X.
A complete normed vector space is called a Banach space.

Definition 2.7. A complete inner product space is called a Hilbert space.

2.2 On operators

We will begin this section by giving some definitions of properties of operators using
the same notation as [11], which is also the source of the definitions, albeit again
with slightly different formulations. After that we will recall convenient equivalent
conditions for some of the defined properties and a theorem that guarantees the
existence of a square root of an operator under certain circumstances. The results
are well-known and thus heavily rely on citations for their proofs, leaving only
minor details left to prove ourselves. Since in our case the domain will always be
the whole vector space on which the operator is defined, we do not need to develop
a general approach on that aspect.

Definition 2.8. A mapping Q : X → Y between two vector spaces X and Y over
the same field F ∈ {R,C} is called a linear operator if it satisfies

Q(αx1 + x2) = αQ(x1) +Q(x2)

for all α ∈ F and all x1, x2 ∈ X. Note that the addition and scalar multiplication
on the left hand side and the right hand side of the equation are not necessarily the
same.
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Chapter 2 Preliminaries

Following convention we will from now on we drop the brackets and write
Qx instead of Q(x). Furthermore Definition 2.8 implicitly states that throughout
the section any two vector spaces that are connected through a linear operator are
over the same field F ∈ {R,C}. If we have only one vector space, then we also
denote it’s field by F.

Definition 2.9. A linear operator Q : X → Y between two normed vector spaces
X and Y is called bounded if there exists C > 0 such that

‖Qx‖Y ≤ C‖x‖X ∀ x ∈ X (2.1)

In this case

‖Q‖ := inf{C > 0 | (2.1) holds true}

is called the operator norm of Q.

Lemma 2.10. Let Q1 : X → Y and Q2 : X → Y be bounded linear operators and
α ∈ F. Then ‖.‖ as defined in Definition 2.9 satisfies

‖Q1 +Q2‖ ≤ ‖Q1‖+ ‖Q2‖ ‖αQ1‖ = |α|‖Q1‖

This lemma is proven in e.g. [11, Section 4.4] and also should give a good idea
why we call the operator norm ‘norm’. Imagining operators as elements of normed
vector spaces is however not necessary in our context.
[11, Section 5.13] motivates the following definition of self-adjointness, which is
sufficient for our purposes.

Definition 2.11. A linear operator Q : H → H from a Hilbert space H onto itself
is called self-adjoint if it satisfies

〈Qh1, h2〉 = 〈h1, Qh2〉

for all h1, h2 ∈ H.

What we will need at one point is to take a square root of a self-adjoint bounded
linear operator Q, i.e. we need to find an operator Q

1
2 such that Q

1
2Q

1
2 = Q. How-

ever self-adjointness is not enough to ensure the existence of such an operator as one
can visualize for example by taking R as a vector space over itself with the multi-
plication as inner product. Linear operators are in this case simply multiplications
with a given real number and are automatically bounded and self-adjoint. If we
choose Q to be multiplication by a negative number, we can not find a square root
of Q in the set of linear operators. Hence we need to assume one more property,
namely nonnegativeness.
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2.2 On operators

Definition 2.12. A self-adjoint bounded linear operator Q : H → H from a Hilbert
space H onto itself is called nonnegative if it satisfies

〈Qh, h〉 ≥ 0

for all h ∈ H.

Definition 2.13. We denote the set of all nonnegative self-adjoint bounded linear
operators from a Hilbert space H onto itself by B+ [H].

Now we are able to cite the following lemma from [11, Theorem 5.85], where one
can also find a very detailed and nice proof.

Lemma 2.14. For every operator Q ∈ B+ [H] there exists a unique Q
1
2 ∈ B+ [H]

with the property that Q
1
2Q

1
2 = Q.

We call this Q
1
2 the square root of Q. For our application of this lemma we also

need to ensure that the square root is compact if the original operator is compact.
Our definition of compactness is based on [11, Theorem 4.52], where it is shown
that this definition is equivalent to a definition with sets instead of sequences.

Definition 2.15. A linear operator Q : X → Y between two Banach spaces X
and Y is called compact if for every bounded sequence (xn)n∈N ⊂ X there exists a
convergent subsequence in (Qxn)n∈N ⊂ Y .

Definition 2.16. Let X be a normed vector space. The set of all bounded linear
operators from X to F is called the dual space of X and is denoted by X∗. Here we
identify the field F with the vector space F1.

Definition 2.17. We say a sequence (xn)n∈N ⊂ X converges weakly to x ∈ X
if f(xn)→ f(x) in F for all f ∈ X∗. In this case we write xn

w→ x.

Three well-known facts (see e.g. [11, Problem 4.67]) are that weak convergence
implies boundedness, that norm convergence implies weak convergence and that
weak limits are unique.

Lemma 2.18. Let X be a Banach space and x, x∞1 , x
∞
2 ∈ X.

If (xn)n∈N ⊂ X is such that xn
w→ x, then (xn)n∈N is bounded. If (xn)n∈N ⊂ X

is such that xn → x, then xn
w→ x. If (xn)n∈N ⊂ X is such that xn

w→ x∞1 and
xn

w→ x∞2 , then x∞1 = x∞2 .

An equivalent condition for compactness on Hilbert spaces can be found in [11,
Problem 5.41] where it is an exercise with hints. For better readability we will
transform the hints into a rigorous proof without deviating from the idea of [11].
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Chapter 2 Preliminaries

Lemma 2.19. A linear operator Q : X → Y between two Hilbert spaces X and Y
is compact if and only if Qxn → 0 in Y for all (xn)n∈N ⊂ X that converge weakly
to zero in X.

Proof. First let Q be compact and choose (xn)n∈N ⊂ X such that xn
w→ 0 in X.

Observe that (xn)n∈N is bounded by Lemma 2.18.
We show that Qxn

w→ 0 is true in Y . To that end let f ∈ Y ∗. Due to the linearity
of both Q and f , fQ : X → F is also linear:

fQ(αx1 + x2) = f(Q(αx1 + x2)) = f(αQ(x1) +Q(x2))

= αf(Q(x1)) + f(Q(x2)) = αfQ(x1) + fQ(x2)

for all α ∈ F and all x1, x2 ∈ X. Hence fQ ∈ X∗. Because xn
w→ 0 in X we see that

for any f ∈ Y ∗ we have f(Qxn) = fQ(xn)→ 0 in F which proves that Qxn
w→ 0 in

Y .
Assume that (Qxn)n∈N does not converge to zero. Then there must exist a

subsequence (Qxnk)k∈N that is bounded away from zero in norm, i.e. there exists
ε > 0 such that

‖Qxnk‖Y ≥ ε (2.2)

for all k ∈ N.
Due to the boundedness of (xn)n∈N and the compactness of Q, (Qxnk)k∈N must

have a convergent subsequence (Qxnkj )j∈N ⊂ Y . Let y ∈ Y denote the limit of

this subsequence. By (2.2) we see ‖y‖Y ≥ ε and thus y 6= 0. As norm convergence
implies weak convergence (Lemma 2.18) we have Qxnkj

w→ y in Y . This is a

contradiction to the fact that we have already Qxn
w→ 0 and thus also Qxnkj

w→ 0

in Y because weak limits are unique (Lemma 2.18 again). Hence our assumption
is wrong and Qxn → 0 in Y .

Now let Q have the property that Qxn → 0 for any (xn)n∈N ⊂ X such that xn
w→ 0

in X.
Let (xn)n∈N ⊂ X be a bounded sequence. We know that every bounded sequence

in a Hilbert space has a weakly convergent subsequence (see e.g. [11, Lemma 5.69]
for a proof). Hence there exists x ∈ X and a subsequence (xnk)k∈N such that

xnk
w→ x in X.

xnk − x
w→ 0 in X can easily be seen from the definition of weak convergence.

Let f ∈ X∗, then f(xnk − x) = f(xnk) − f(x) → 0 in F if we already know that
f(xnk)→ f(x).

Applying the special property of Q onto the sequence (xnk − x)k∈N we get that
Qxnk − Qx = Q(xnk − x) → 0 and thus Qxnk → Qx. Or in other words we have
found a convergent subsequence of (Qxn)n∈N. According to Definition 2.15 this
means that Q is compact.
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2.2 On operators

With Lemma 2.19 proven, we can now prove the lemma that guarantees the
compactness of our square root of a compact operator. It can be found in [11,
Problem 5.62], from where we will transform the hints into a rigorous proof once
more.

Lemma 2.20. Let Q ∈ B+ [H]. If Q is compact, then it’s square root Q
1
2 ∈ B+ [H]

from Lemma 2.14 is also compact.

Proof. Due to Lemma 2.19 it is sufficient to show that Q
1
2xn → 0 for all

(xn)n∈N ⊂ H that converge weakly to zero. On that account let (xn)n∈N ⊂ H be
such that xn

w→ 0.

‖Q 1
2xn‖2 = 〈Q 1

2xn, Q
1
2xn〉 = 〈Qxn, xn〉 ≤ ‖Qxn‖‖xn‖ (2.3)

is true due to the self-adjointness of Q
1
2 and the Cauchy-Schwarz inequality (Lemma

2.4). ‖Qxn‖ → 0 due to Lemma 2.19 because Q is compact. (‖xn‖)n∈N is bounded
due to Lemma 2.18 because (xn)n∈N is a weakly convergent sequence.

Hence the right hand side of (2.3) converges to zero and thus Q
1
2xn → 0.

Now Q
1
2 is compact by Lemma 2.19.

Lemma 2.21. Let Q1 : X → Y and Q2 : X → Y be compact linear operators
between two Banach spaces X and Y . Then αQ1 + Q2 is also a compact linear
operator for all α ∈ F.

We refer to [11, Theorem 4.53] but note that the proof could also be done quickly
as an exercise.

2.2.1 Spectral theory

Of utmost importance for chapter 3 is a spectral theorem for compact operators.
Let us cite it from [14, Theorem VI.2.5] first and then discuss what the new notation
means and how it fits into our setting afterwards. Note that original version of this
theorem encompasses more than we need and we do not cite it wholesale, and that
we refer to [14] for the proof.

Theorem 2.22. Let X be a Banach space over F ∈ {R,C} and Q : X → X be a
compact linear operator.

a) If X is of infinite dimension, then 0 ∈ σ(Q).

b) The (possibly empty) set σ(Q)\{0} is countable.

c) Every λ ∈ σ(Q)\{0} is an eigenvalue of Q.

d) σ(Q) does not possess an accumulation point other than 0.
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Chapter 2 Preliminaries

Definition 2.23. The resolvent set ρ(Q) of Q is the set of all λ ∈ F such that
λI −Q has a bounded inverse. Here I denotes the identity on X.
σ(Q) := F\ρ(Q) is called the spectrum of Q.

In general the spectrum of a linear operator between two Banach spaces consists
of three disjoint sets called the point spectrum, the continuous spectrum and the
residual spectrum whereas the set of eigenvalues is the point spectrum [12, Defini-
tion 8.39]. However we do not need to delve deeply into that because the theorem
states that except possibly 0, any λ in the spectrum is an eigenvalue, i.e. there
exists x ∈ X, x 6= 0, such that Qx = λx.

Furthermore there can not be eigenvalues of Q in ρ(Q) as we see from the def-
inition of ρ(Q) that λI − Q must be injective for any λ ∈ ρ(Q). And because
x = 0 already solves the equation λIx−Qx = 0, this means there can be no other
solution.

If additionally to compactness we have self-adjointness, we can conclude even
more. We cite a slimmed down (dropping the case F = C and a decomposition
of H) version of the spectral theorem for compact self-adjoint operators from [14,
Theorem VI.3.2], where a proof can also be found.

Theorem 2.24. Let Q : H → H be a compact self-adjoint linear operator from a
real Hilbert space H onto itself. Then there exists an (possibly finite) orthonormal
system {e1, e2, · · · } and a zero sequence (λ1, λ2, · · · ) ⊂ R\{0} such that

Qx =
∑
k

λk〈x, ek〉ek (2.4)

The λk are the nonzero eigenvalues and ek is an eigenvector to λk. Furthermore
we have ‖Q‖ = sup

k
|λk|.

‘Orthonormal system’ means that each ek has norm one and the vectors are
pairwise orthogonal, i.e. 〈ek, ej〉 = 0 for j 6= k. This theorem is a massively
useful tool to handle compact self-adjoint operators, the only downside is that the
requirements are rather strict. Observe furthermore that {e1, e2, · · · } is not empty
for Q 6= 0 due to (2.4).

The decomposition of the space H within the original theorem that we did not
cite above will be used by us in the form of the following lemma which can be seen
from the proof of [14, Theorem VI.3.2] as well.

Lemma 2.25. In the setting of Theorem 2.24 any x ∈ H can be written as

x = y +
∑
k

〈x, ek〉ek

for some y in the kernel of Q. Furthermore y is in the orthogonal complement of
the closure of span{e1, e2, · · · }.
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2.2 On operators

Remark 2.26. Theorem 2.24 offers us a way to directly see the validity of Lemma
2.14 with compactness added to the requirements. If all λ are nonnegative in (2.4),
then we can construct a square root of Q by replacing all λ with

√
λ in the equation.

Two more useful facts about spectral theory for which the proofs can be found
in [12, Theorem 8.71] and [12, Theorem 8.52] respectively are the following.

Lemma 2.27. Let X be a Banach space and Q : X → X a bounded linear operator.
Then σ(Qλ) 6= ∅

Lemma 2.28. Let X be a complex Hilbert space and Q : X → X a self-adjoint
linear operator. Then σ(Qλ) ⊆ R.

Another important result for us is the following slightly weakened version of
[8, V. Theorem 4.10], which states that a bounded and self-adjoint operator is
stable in the sense that a small (with respect to the operator norm) self-adjoint
perturbation has only little effect on the spectrum. We will use this theorem to
prove a continuity property between the spectra of a whole family of operators,
though.

Theorem 2.29. Let H be a complex Hilbert space and T,A be bounded self-adjoint
linear operators from H onto itself.
Then S = T + A is self-adjoint and dist(σ(S), σ(T )) ≤ ‖A‖, that is,

sup
λ∈σ(S)

dist(λ, σ(T )) ≤ ‖A‖, sup
λ∈σ(T )

dist(λ, σ(S)) ≤ ‖A‖

A proof can be found in [8].

2.2.2 Complexification

Imagine the situation in linear algebra, where we have the real matrix

A :=

(
0 −1
1 0

)
It’s characteristical polynomial is λ2 + 1 which has no real root. One might say, A
has i and −i as eigenvalues because

A

(
i
−1

)
=

(
1
i

)
= −i

(
i
−1

)
A

(
i
1

)
=

(
−1
i

)
= i

(
i
1

)
However if we regard A as an endomorphism on R2, then i and −i are clearly no
eigenvalues of A because not only are they not in R, but the eigenvectors corre-
sponding to them are not even in R2. By saying i and −i are eigenvalues of A, we
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Chapter 2 Preliminaries

implicitly expand the space from R2 to C2 and a similar procedure can be done in
a setting with vector spaces of infinite dimension.

I wrote this section based on [1, Section 9.14] for two reasons. Firstly we need
Theorem 2.29 in a real setting but [8] only develops the complex case. Secondly this
topic was indeed a hurdle for me when reading the research papers that this thesis
is based on. The authors often take for example real Banach spaces, but then
regard the spectrum of operators between these spaces as being in the complex
plane. Hopefully the following pages will clear up how we can apply aspects of
spectral theory developed for complex function spaces to real function spaces even
if the proofs are mostly skipped. We limit ourselves to the case of Hilbert spaces
because that is what we will work in later.

Definition 2.30. Let H be a real Hilbert space, we define it’s complexification
H̃ := H ×H with the usual componentwise addition on H ×H.

Remark 2.31. Always keep in mind that elements (h1, h2) ∈ H̃ could be denoted by
h1 + ih2 if we would strive for less formal correctness. By visualizing them like that
one can easily see how the definitions of this section are motivated. After defining
scalar multiplication we will see that this unformal notation would be not so bad
after all due to (h1, h2) = (h1, 0) + i(0, h2).

Definition 2.32. Let (h1, h2), (h3, h4) ∈ H̃. We equip H̃ with the following scalar
multiplication and complex conjugate map. For α ∈ C we can uniquely write
α = a+ ib with a, b ∈ R.

α(h1, h2) := (ah1 − bh2, ah2 + bh1)

(h1, h2) := (h1,−h2)

Furthermore we define an inner product on H̃ through

〈(h1, h2), (h3, h4)〉H̃ := 〈h1, h3〉H + 〈h2, h4〉H + i〈h2, h3〉H − i〈h1, h4〉H
We skip the easy calculations that what we defined is indeed a scalar multiplica-

tion and an inner product respectively and observe

‖(h1, h2)‖2
H̃

= 〈(h1, h2), (h1, h2)〉H̃
= 〈h1, h1〉H + 〈h2, h2〉H + i〈h2, h1〉H − i〈h1, h2〉H
= ‖h1‖2

H + ‖h2‖2
H (2.5)

by using the symmetry of the inner product in H. If we have a Cauchy sequence
in H̃ we see by (2.5) that both the first and the second component define Cauchy
sequences in H and as such converge. Arranging their two limits as an element
of H̃, one sees by (2.5) that the Cauchy sequence in H̃ converges. Hence H̃ is
complete and in fact a proper complex Hilbert space.
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Definition 2.33. Let Q : H → H be a linear operator. We define Q̃ : H̃ → H̃
through

Q̃(h1, h2) := (Qh1, Qh2)

for (h1, h2) ∈ H̃.

Lemma 2.34. Q̃ : H̃ → H̃ is a linear operator.
We have the following implications:

• If Q is bounded, then Q̃ is bounded and ‖Q‖ = ‖Q̃‖.

• If Q is compact, then Q̃ is compact.

• If Q is self-adjoint, then Q̃ is self-adjoint.

Proof. The linearity and the part about self-adjointness are left to the reader as an
exercise.

If Q is bounded, then by (2.5) we have for any (h1, h2) ∈ H̃

‖Q̃(h1, h2)‖2
H̃

= ‖(Qh1, Qh2)‖2
H̃

= ‖Qh1‖2
H + ‖Qh2‖2

H

≤ ‖Q‖‖h1‖2
H + ‖Q‖‖h2‖2

H = ‖Q‖‖(h1, h2)‖2
H̃

which means that Q̃ is bounded and ‖Q̃‖ ≤ ‖Q‖.
Now ‖Q̃‖ ≥ ‖Q‖ is because for all x ∈ H we have

√
2‖Qx‖H = ‖(Qx,Qx)‖H̃ = ‖Q̃(x, x)‖H̃

≤ ‖Q̃‖‖(x, x)‖H̃ = ‖Q̃‖
√

2‖x‖H

Let Q be compact and ((xn, yn))n∈N ⊂ H̃ be a bounded sequence. (xn)n∈N and
(yn)n∈N are bounded sequences in H through (2.5). Due to the compactness of
Q, (Qxn)n∈N has a convergent subsequence (Qxnk)k∈N and (Qynk)k∈N also has a
convergent subsequence. If we denote their respective limits by x∞ and y∞, then
by (2.5) we see that there exists a subsequence of (Q̃(xn, yn))n∈N = ((Qxn, Qyn))n∈N
that converges to (x∞, y∞) with respect to ‖.‖H̃ and hence Q̃ is compact.

Lemma 2.35. The real eigenvalues of Q̃ and the eigenvalues of Q are the same.

Proof. Let λ ∈ R be an eigenvalue of Q. Then there exists a h ∈ H, h 6= 0 that is
an eigenvector of Q to λ. Through

Q̃(h, 0) = (Qh,Q0) = (λh, 0) = λ(h, 0)

and (h, 0) 6= 0, λ is an eigenvalue of Q̃.
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Conversely let τ ∈ R be a real eigenvalue of Q̃. There is an eigenvector (h1, h2) ∈
H̃, (h1, h2) 6= 0 to τ . Because τ is real we have

(Qh1, Qh2) = Q̃(h1, h2) = τ(h1, h2) = (τh1, τh2)

=⇒ Qh1 = τh1, Qh2 = τh2

and due to (h1, h2) 6= 0 either h1 6= 0 or h2 6= 0. Hence τ is an eigenvalue of Q.

This means that if we can gain information on the real eigenvalues of Q̃ through
any means, then we also have the same information for the eigenvalues of Q.

2.3 Riesz’ representation theorem

In this section we will prove a modification of Riesz’ representation theorem for
bilinear forms that we will later in this thesis need. We start with Riesz’ well-
known representation theorem in it’s usual form, which is in this case taken from
[15, Section III.6] where one can also find it’s proof. Note that unlike [15] we write
〈., .〉 for inner products.

Lemma 2.36. Let H be a Hilbert space and b a bounded linear functional on H.
Then there exists a uniquely determined vector yb of H such that

b(v) = 〈v, yb〉 for all v ∈ H, and ‖b‖ = ‖yb‖

Conversely, any vector Ψ ∈ H defines a bounded linear functional aΨ on H by

aΨ(v) = 〈v,Ψ〉 for all v ∈ H, and ‖aΨ‖ = ‖Ψ‖

What [15] calls a ‘bounded linear functional’ is simply an element of H∗, the
dual space of H. Note that Lemma 2.36 is valid for both real and complex Hilbert
spaces, hence our now following modified version for bilinear forms is also valid for
sesquilinear forms in complex Hilbert spaces. But because later we will only need
it for real Hilbert spaces, we drop the complex case to slightly ease up notation.

Theorem 2.37. Let H be a real Hilbert space and b : H×H → R a bounded bilinear
functional, i.e. b needs to satisfy the following conditions:

b(αv1 + v2,Ψ) = αb(v1,Ψ) + b(v2,Ψ)

b(v, αΨ1 + Ψ2) = αb(v,Ψ1) + b(v,Ψ2) Bilinearity

|b(v,Ψ)| ≤ γ‖v‖‖Ψ‖ Boundedness

for all v, v1, v2,Ψ,Ψ1,Ψ2 ∈ H, all α ∈ R and some γ > 0.
Then there exists a bounded linear operator B : H → H such that:

b(v,Ψ) = 〈Bv,Ψ〉 ∀ v,Ψ ∈ X
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Proof. If we look at the situation for a fixed v ∈ H, we observe that bv := b(v, .)
satisfies the conditions of Lemma 2.36. Consequentially for every v ∈ H we get a
ybv ∈ H such that

b(v,Ψ) = bv(Ψ) = 〈ybv ,Ψ〉 ∀ Ψ ∈ H

Now we define B : H → H to map v onto ybv and easily see from the above equation
that

b(v,Ψ) = 〈Bv,Ψ〉 ∀ v,Ψ ∈ H (2.6)

All we have to do now is to verify that B is linear and bounded. Let v1, v2,Ψ ∈ H
and observe that due to the bilinearity of b and (2.6) we can calculate

〈Bv1 +Bv2,Ψ〉 = 〈Bv1,Ψ〉+ 〈Bv2,Ψ〉 = bv1(Ψ) + bv2(Ψ)

= b(v1,Ψ) + b(v2,Ψ) = b(v1 + v2,Ψ) = bv1+v2(Ψ)

= 〈B(v1 + v2),Ψ〉 (2.7)

Since (2.7) is valid for all Ψ ∈ H, we can conclude Bv1 + Bv2 = B(v1 + v2) by
shifting everything to the left hand side of the equation and then setting Ψ :=
Bv1 +Bv2 −B(v1 + v2). Adding to that the similarly calculated multiplicativity

∀ Ψ ∈ H : 〈B(αv),Ψ〉 = bαv(Ψ) = b(αv,Ψ)

= αb(v,Ψ) = αbv(Ψ) = α〈Bv,Ψ〉
= 〈αBv,Ψ〉

=⇒ B(αv) = αBv

we see that B is indeed linear. For the remaining boundedness of B we observe
that for all v ∈ H

‖Bv‖2 = 〈Bv,Bv〉 = bv(Bv) = b(v,Bv)

≤ γ‖v‖‖Bv‖
=⇒ ‖Bv‖ ≤ γ‖v‖

due to the boundedness of b, which concludes the proof.

2.4 On function spaces

Having these tools established it is now time to take a closer look at the most
important function space for this thesis, the Sobolev space H2

0 (D). We already
mentioned it in Definition 1.2 without further explaining, what kind of functions
it encompasses. In order to do so we need a little bit of background which will
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be given in this section. The general approach to Sobolev spaces presented here is
a very direct one adopted from [2], netting us the advantage to be easily able to
imagine what a function in the occurring Sobolev spaces looks like. A downside to
this approach is that within our context we are not able to treat distributions which
are not ‘nice’ in the sense that they can be identified with a L2 function. However
we are not interested in any of these so this will not pose a problem. Should the
reader be interested in a more general approach on distributions and Sobolev spaces
I recommend [12]. As mentioned before, we only cover real valued function spaces.

2.4.1 L2(D) and C∞0 (D)

First we want to set the starting point on our quest to understand what the H2
0 (D)

looks like.

Definition 2.38. L2(D) is a set of equivalency classes of functions. Given a func-
tion f : D → R satisfying

‖f‖L2(D) :=

√√√√∫∫
D

|f(x)|2 dx <∞ (2.8)

we define it’s equivalency class to be

[f ] :=
{
g : D → R | ‖f − g‖L2(D) = 0

}
L2(D) is the set of all equivalency classes of functions satisfying (2.8).

L2(D) :=
{

[f ] | f : D → R, ‖f‖L2(D) <∞
}

‖[f ]‖L2(D) := ‖f‖L2(D)

[f ] + [g] := [f + g]

α · [f ] := [α · f ]

This is standard analysis. The reason why we have to take equivalency classes is
that the norm as defined above would not be positive definite otherwise. Following
convention we will drop the distinction between functions and equivalency classes
and restrict ourselves to equalities ‘almost everywhere’ (in D) or equivalently ‘for
almost all x ∈ D’ as we have already done in Definition 1.1 for example. This
means that the equalities are allowed to be untrue on any set of Lebesgue measure
zero for fixed representative functions of the equivalency classes. Such statements
make sense because for f = g almost everywhere we have ‖f − g‖L2(D) = 0 and
hence f = g in the L2-sense.

We recall the following fact from [12, Example 6.23].
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Lemma 2.39. L2(D) equipped with

〈x, y〉L2(D) :=

∫∫
D

x(t) · y(t) dt

is a Hilbert space, in particular 〈., .〉L2(D) is an inner product.

Another important function space besides L2(D) is C∞0 (D). We assume that
the concepts of continuity and (classical) differentiation are known and the corre-
sponding notation becomes clear from the context. The overline in the following
definition denotes the closure with respect to the usual metric on R2 and for our
purposes the 0 is always included in N.

Definition 2.40. {x ∈ D | f(x) 6= 0} ∩D is called the support of f or supp(f).

C(D) := {f : D → R | f is continuous}

C∞(D) :=

{
f ∈ C(D) | ∂

n+mf

∂xn1∂x
m
2

exists for all n,m ∈ N and is continuous

}
Definition 2.41. Functions in the following set are called test functions.

C∞0 (D) := {f ∈ C∞(D) | supp(f) is compact}

Since D is bounded, the condition that f has compact support is equivalent to
{x ∈ D | f(x) 6= 0} ⊆ D. Furthermore any f ∈ C∞0 (D) is clearly in L2(D) because
as a continuous function f is bounded on the compact set supp(f) and

‖f‖2
L2(D) =

∫∫
D

|f(x)|2 dx ≤
∫∫
D

‖f‖2
L∞(D) dx

where the right hand side is less or equal than ‖f‖2
L∞(D) times the finite Lebesgue

measure of D. And as we just implicitly used it yet again, here is the formally
correct definition for another function space from the introduction.

Definition 2.42.

‖f‖L∞(D) := inf{C > 0 | f ≤ C almost everywhere in D}
L∞(D) :=

{
f ∈ L2(D) | ‖f‖L∞(D) is finite

}
2.4.2 H1(D) and H2(D)

Usually the desire to differentiate functions that are not differentiable in the classic
sense leads to the notion of distributions, elements of the dual space of the space
of test functions. This rather abstract concept can then be extended to a theory

23



Chapter 2 Preliminaries

where one can differentiate without restrictions and identify the distributions with
classical functions in some sense. The idea behind this revolves to a huge deal
around the integration by parts. Our approach to ‘weak’ derivatives also uses
integration by parts, but is less ambitious in the sense that we will not be able to
differentiate any L2 function at the end. This section is based on [2].

Definition 2.43. Let u, v ∈ L2(D) and i, j ∈ N. If∫∫
D

u
∂i+j

∂xi1∂x
j
2

Ψ dx = (−1)i+j
∫∫
D

vΨ dx (2.9)

is true for all Ψ ∈ C∞0 (D), then we call v the (i, j)th weak derivative of u and write

v =
∂i+j

∂xi1∂x
j
2

u =
∂i+ju

∂xi1∂x
j
2

One observes that we used the same notation for weak derivatives as we did for
classical derivatives. To understand why this makes sense we need to know two
things.

Lemma 2.44. Weak derivatives in the sense of Definition 2.43 are unique in L2(D)
if they exist.

For a proof of this see [2, Lemma 6.1.4]. The second thing we need to know is
[2, Lemma 6.1.5].

Lemma 2.45. If v ∈ L2(D) is the (i, j)th derivative of u ∈ L2(D) in the classical
sense, then (2.9) holds true for all Ψ ∈ C∞0 (D) and hence v is also the (i, j)th weak
derivative of u.

This can be seen from integration by parts because every boundary term involving
a test function vanishes due to the compact support of the test functions. Due to
the two previous lemmata we will not make a distinction between classical and
weak derivatives anymore in the future. Also we are in a position where we can
define our first Sobolev spaces.

Definition 2.46. H2(D) is the set of all functions u ∈ L2(D) such that

∂u

∂x1

,
∂u

∂x2

,
∂2u

∂x2
1

,
∂2u

∂x2
2

and
∂2u

∂x1∂x2

all exist in L2(D).

‖u‖2 :=

√√√√∫∫
D

(u)2 + (
∂u

∂x1

)2 + (
∂u

∂x2

)2 + (
∂2u

∂x2
1

)2 + (
∂2u

∂x2
2

)2 + (
∂2u

∂x1∂x2

)2 dx
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Definition 2.47. H1(D) is the set of all functions u ∈ L2(D) such that

∂

∂x1

u and
∂

∂x2

u

both exist in L2(D).

‖u‖1 :=

√√√√∫∫
D

(u)2 + (
∂u

∂x1

)2 + (
∂u

∂x2

)2

Observe that H1(D) and H2(D) are vector spaces and that ‖.‖1 and ‖.‖2 indeed
describe a norm on ‘their’ space. Everything except the triangle inequality can be
seen without much hassle, and the triangle inequality itself follows from the triangle
inequality in L2(D) with an easy calculation. We do not prove these things here in
detail, but instead cite the following lemma.

Lemma 2.48. H2(D) equipped with the norm ‖.‖2 is a Banach space. The same
holds true for H1(D) equipped with ‖.‖1.

This is well-known, for a proof see e.g. [2, Theorem 6.2.3]. Continuing from the
definitions one can already suspect that we could also denote L2(D) by H0(D). We
will not do this, but it will be of some importance for an imbedding theorem that
we will cite later. Another thing one can easily see from the definitions is that any
function in H2(D) is also in H1(D). With this in mind we cite a special case of
[12, Theorem 7.32] and refer the reader to [12] for a proof.

Lemma 2.49. There exists c > 0 such that for all u ∈ H1(D) we have

‖u‖2
1 ≤ c

∫∫
D

(
∂u

∂x1

)2 + (
∂u

∂x2

)2 dx = c

∫∫
D

∇u · ∇u dx

Definition 2.50. Let u ∈ H2(D). Then

∆u :=
∂2u

∂x2
1

+
∂2u

∂x2
2

and ∇u :=

( ∂u
∂x1
∂u
∂x2

)

2.4.3 H2
0(D)

Because we can easily see that any test function is in H2(D) from the definitions,
the following makes sense.

Definition 2.51. H2
0 (D) is the closure of C∞0 (D) in H2(D) with respect to ‖.‖2.
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So we have to imagine H2
0 (D) as those functions in L2(D) whose weak derivatives

up to order two exist in L2(D) and who are the H2(D)-limit of a sequence of test
functions.

Remark 2.52. H2
0 (D) equipped with ‖.‖2 is a Banach space [2, Definition 6.2.11].

Lemma 2.53. H2
0 (D) is dense in L2(D). Hence if v ∈ L2(D) and

0 =

∫∫
D

vΨ dx ∀ Ψ ∈ H2
0 (D)

then v = 0.

Proof. By construction we have C∞0 (D) ⊆ H2
0 (D). Furthermore C∞0 (D) is dense in

L2(D), see e.g. [14, Lemma VI.1.10] for a proof of this. For the second part observe
that for any Ψ ∈ H2

0 (D) with the help of the Cauchy-Schwarz inequality (Lemma
2.4) for L2(D)

0 =

∫∫
D

vΨ dx =

∫∫
D

v(Ψ− v + v) dx = ‖v‖2
L2(D) +

∫∫
D

v(Ψ− v) dx

≥ ‖v‖2
L2(D) − ‖v‖L2(D)‖Ψ− v‖L2(D)

If ‖v‖L2(D) were not equal to zero, then above calculation would be a contradiction
because we can make ‖Ψ − v‖L2(D) arbitrarily small by virtue of the density part
of the lemma.

A question that remains open is how the boundary conditions

u = w,
∂u

∂ν
=
∂w

∂ν
on ∂D ⇐⇒ v = 0,

∂v

∂ν
= 0 on ∂D (2.10)

for v := u − w in Definition 1.2 have to be understood. While we know that
v ∈ H2

0 (D) is indeed continuous (see e.g. [12, Theorem 7.27]) and thus could be
evaluated on the boundary by evaluating it’s continuous extension to it, the case
is not as easy for it’s normal derivative.

In general the approach to this issue to find a continuous trace operator from a
‘non-smooth’ function space to a suitable space of functions on the boundary that
behaves just like restriction to the boundary for any functions where that makes
sense. Similarly we can search for a continuous operator that gives a ‘non-smooth’
function a generalized normal derivative on the boundary that is the same as the
usual normal derivative whenever the latter exists. [2, Theorem 6.3.11] states that
such an operator exists for the space H2

0 (D).
However we do not need to go into details because of [12, Theorem 7.41] which

we slim down and cite in the form of the following lemma.

26



2.4 On function spaces

Lemma 2.54. H2
0 (D) is the set of all functions v ∈ H2(D) such that

v = 0,
∂v

∂ν
= 0 on ∂D

in the sense of trace.

Or in other words for any v ∈ H2
0 (D) both v and ∂v

∂ν
are zero on the boundary ∂D

in the sense of trace under our smoothness assumptions for ∂D. Hence the demand
for (2.10) in Definition 1.2 is in fact redundant if we already demand u−w ∈ H2

0 (D).
In the central chapters 3 and 4 we will always work with the latter condition and
Definition 2.51 while keeping (2.10) only around as a visual aid to imagine how the
elements of H2

0 (D) look like.
Green’s second formula is not only valid in H2

0 (D), but takes an especially man-
ageable form due to the boundary conditions from Lemma 2.54 which are included
in H2

0 (D).

Theorem 2.55. Let v,Ψ ∈ H2
0 (D). Then∫∫

D

v∆Ψ dx =

∫∫
D

Ψ∆v dx

As one can easily see, the theorem above is a corollary of the following lemma.

Lemma 2.56. Let v,Ψ ∈ H2
0 (D). Then∫∫

D

v∆Ψ dx =

∫∫
D

∇v · ∇Ψ dx

This is [2, equation 6.6.4] where we plugged in our H2
0 (D) functions and kept in

mind Lemma 2.54. For a proof of this equation the reader is referred to [2].

Now we equip the H2
0 (D) with a custom inner product suited for our calculations,

this will then be the function space that we will mostly work with. The following
theorem is strongly inspired by [10, Section 4.5] where something similar is proven
in a slightly different setting.

Theorem 2.57. H2
0 (D) equipped with the inner product

〈x, y〉H2
0 (D) :=

∫∫
D

∆x∆y
dx

q − p (2.11)

with p, q as in Definition 1.1 is a Hilbert space. The norm

‖u‖H2
0 (D) :=

√
〈u, u〉H2

0 (D)
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is equivalent to the usual norm on H2
0 (D) from Definition 2.46, ‖.‖2.

i.e. there exist constants c > 0 and C > 0 such that

c‖u‖2 ≤ ‖u‖H2
0 (D) ≤ C‖u‖2 ∀ u ∈ H2

0 (D) (2.12)

Proof. Recall Definition 2.2 and observe that linearity, symmetry and positive semi-
definiteness of 〈., .〉H2

0 (D) can easily be seen. Assume for the moment that (2.12) is

valid. Since H2
0 (D) equipped with ‖.‖2 is a Banach space (Remark 2.52), the rest

of the theorem is an easy corollary of (2.12) as follows:
Because ‖.‖2 is positive definite, so is 〈., .〉H2

0 (D) and hence the latter is indeed an
inner product. Furthermore a Cauchy sequence (recall Definition 2.6) with respect
to ‖.‖H2

0 (D) is also a Cauchy sequence with respect to ‖.‖2 by (2.12). But then a

limit exists in H2
0 (D) with respect to the norm ‖.‖2 and, again applying (2.12), we

see that the sequence also converges to that limit with respect to ‖.‖H2
0 (D).

So all we have to do is to check norm equivalency (2.12). Let u ∈ H2
0 (D). One

direction can be seen from the Cauchy-Schwarz inequality (Lemma 2.4) for L2(D)
in which derivatives of u up to second order are by Definition 2.46. We recall
q − p ≥ q0 from Definition 1.1 and calculate

‖u‖2
H2

0 (D) =

∫∫
D

(∆u)2 dx

q − p ≤
∫∫
D

(∆u)2 dx

q0

=
1

q0

∫∫
D

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)2 dx

=
1

q0

∫∫
D

(
∂2u

∂x2
1

)2 + (
∂2u

∂x2
2

)2 dx+
2

q0

∫∫
D

(
∂2u

∂x2
1

)(
∂2u

∂x2
2

) dx

≤ 1

q0

∫∫
D

(
∂2u

∂x2
1

)2 + (
∂2u

∂x2
2

)2 dx+
2

q0

√√√√∫∫
D

(
∂2u

∂x2
1

)2 dx

√√√√∫∫
D

(
∂2u

∂x2
2

)2 dx

≤ 1

q0

‖u‖2
2 +

2

q0

‖u‖2‖u‖2 =
3

q0

‖u‖2
2

Taking the square root on both sides of the equation gives us one half of (2.12).
For the other half we have to dig a little deeper and cite a regularity result for

elliptic partial differential equations. In particular we can use [12, Theorem 9.53]
to get

‖u‖2 ≤ c1(‖u‖L2(D) + ‖∆u‖L2(D)) (2.13)

for all u ∈ H2
0 (D) and some c1 > 0.

Although it is a bit awkward here because we lack context, let’s quickly go over
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the details on how we arrive at (2.13). Note that u ∈ H2
0 (D) is a solution ũ to the

Dirichlet problem

−∆ũ = −∆u in D ũ = 0 on ∂D

The boundary condition is fulfilled due to Lemma 2.54 and the interior condition
is obvious. Furthermore −∆ is uniformly elliptic [12, Example 9.3]. Now [12,
Theorem 9.53] is a general result for solutions to this kind of problems and gives
us (2.13).

From Lemma 2.49 we have

‖u‖2
1 ≤ c2

∫∫
D

∇u · ∇u dx (2.14)

for all u ∈ H2
0 (D) and some c2 > 0.

Now we can conclude the following from the definition of ‖.‖1, (2.14), Lemma
2.56 and yet again the Cauchy-Schwarz inequality for L2(D).

‖u‖2
L2(D) ≤ ‖u‖2

1 ≤ c2

∫∫
D

∇u · ∇u dx = −c2

∫∫
D

u∆u dx ≤ c2‖u‖L2(D)‖∆u‖L2(D)

Dividing this by ‖u‖L2(D) and plugging it into (2.13) we get

‖u‖2 ≤ c1c2‖∆u‖L2(D) + c1‖∆u‖L2(D) = c1(1 + c2)‖u‖H2
0 (D)

which concludes the proof.

A corollary of Theorem 2.57 is the following lemma.

Lemma 2.58. There exists some c > 0 with∫∫
D

(∆x)2 dx

q − p ≥ c

∫∫
D

x2 dx

q − p for all x ∈ H2
0 (D)

Proof. Let x ∈ H2
0 (D). Then∫∫

D

x2 dx

q − p ≤
∫∫
D

x2 dx

q0

=
1

q0

‖x‖L2(D) ≤
1

q0

‖x‖2 ≤
1

q0

C‖x‖H2
0 (D)

=
1

q0

C

∫∫
D

(∆x)2 dx

q − p

where C > 0 is the constant from Theorem 2.57.
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2.5 Compact imbeddings

The first step in this section is to give a definition of what a compact imbedding is
and the second is to cite a couple of particular compact imbedding properties for
the Sobolev spaces we defined earlier. Because we defined these spaces to be real,
we restrict ourselves to the real case. In a third step we will then discuss how these
compact imbeddings will help us later.

We start by giving two basic definitions which are slightly modified versions of
their counterparts [12, Definition 7.15] and [12, Definition 7.25] respectively.

Definition 2.59. Let X and Y be real Banach spaces. X is said to be continuously
imbedded in Y , if X ⊆ Y and there exists a constant c > 0 such that

‖u‖Y ≤ c‖u‖X

for all u ∈ X. In this case we write X ↪→ Y .

Definition 2.60. Let X and Y be Banach spaces such that X ↪→ Y . X is said
to be compactly imbedded in Y , if every bounded sequence in X has a convergent

subsequence in Y . In this case we write X
c
↪→ Y .

Equivalently we could say that the naturally defined identity I : X → Y mapping
every x ∈ X onto itself is a compact operator in the sense of Definition 2.15.

Lemma 2.61. Let X, Y, Z be Banach spaces such that X ↪→ Y ↪→ Z.

Then X ↪→ Z. If additionally X ↪→ Y
c
↪→ Z, then X

c
↪→ Z.

Proof. X ⊆ Y ⊆ Z implies X ⊆ Z. The continuity of the imbedding of X into Z is
proven quickly as well. Due to X ↪→ Y there exists c1 > 0 such that ‖u‖Y ≤ c1‖u‖X
for all u ∈ X, and because Y ↪→ Z, there also exists c2 > 0 such that ‖u‖Z ≤ c2‖u‖Y
for all u ∈ Y . Then

‖u‖Z ≤ c2‖u‖Y ≤ c2c1‖u‖X

is true for all u ∈ X, or in other words X ↪→ Z.

Now let Y
c
↪→ Z. Observe that any sequence that is bounded in X is also

bounded in Y because of X ↪→ Y . Hence it has a convergent subsequence in Z due

to Y
c
↪→ Z. This means X

c
↪→ Z and concludes the proof.

Since Theorem 2.57 states that ‖.‖H2
0 (D) and ‖.‖2 are equivalent norms on H2

0 (D),
we have

(H2
0 (D), ‖.‖H2

0 (D)) ↪→ (H2
0 (D), ‖.‖2)

(H2
0 (D), ‖.‖2) ↪→ (H2

0 (D), ‖.‖H2
0 (D))
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2.5 Compact imbeddings

Hence through Lemma 2.61

(H2
0 (D), ‖.‖H2

0 (D)) ↪→ X ⇐⇒ (H2
0 (D), ‖.‖2) ↪→ X

(H2
0 (D), ‖.‖H2

0 (D))
c
↪→ X ⇐⇒ (H2

0 (D), ‖.‖2)
c
↪→ X

where X is any Banach space. Because of that we can drop the cumbersome nota-
tion including the norm and write simply H2

0 (D) within our imbedding properties.

Lemma 2.62. H2
0 (D) ↪→ H2(D)

Proof. H2
0 (D) is a subset of H2 and both use the same norm ‖.‖2. Hence the lemma

is clear from Definition 2.59.

The following lemma is also known as the Rellich imbedding theorem. We cite
it from [12, Theorem 7.29], where one can also find it’s proof.

Lemma 2.63. Let k ∈ N. Then

Hk+1(D)
c
↪→ Hk(D)

And with that we can give the following lemma which is the reason why we
introduced compact imbeddings.

Lemma 2.64. H2
0 (D)

c
↪→ L2(D)

Proof. Because H0(D) is the same as L2(D), we have from our lemmata 2.62 and
2.63

H2
0 (D) ↪→ H2(D)

c
↪→ H1(D)

c
↪→ L2(D)

Applying Lemma 2.61 twice concludes the proof.

Note that the assumptions on D given in Definition 1.1 are valid throughout
this entire thesis and that in a more general setting not all of the aforementioned
lemmata hold true.

There is still one question open for this section, namely how Lemma 2.64 will be
of use later. The answer comes in the form of yet another lemma.

Lemma 2.65. Let X and Y be Hilbert spaces such that X
c
↪→ Y .

Then ‖xn‖Y → 0 for any (xn)n∈N ⊂ X that converges weakly to zero in X.

Proof. This is a direct corollary of Lemma 2.19. X
c
↪→ Y implies that the identity

operator I : X → Y, x 7→ x is compact (Compare Definition 2.60 and Definition
2.15). Applying Lemma 2.19 to I : X → Y concludes the proof.
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Chapter 3

Countability

In the following chapter we want to show that the real positive interior transmission
eigenvalues in the sense of Definition 1.2 are countable and have no accumulation
point other than possibly infinity. This means that they are isolated points and
there can not be for example a whole interval of them. A first section will be
devoted to the construction of a linear operator between Hilbert spaces such that
any interior transmission eigenvalues are also eigenvalues of this operator. After
that is accomplished, we will in a second section narrow down the set of possible
eigenvalues for that operator with the tools established earlier. Throughout this
chapter we closely orientate ourselves along [9], where the case p = 0 is covered and
mimic most of the proofs from there while adding detail.

3.1 Characterisation

We need the following characterisation of interior transmission eigenvalues which
is an extended version of a result in [9].

Theorem 3.1. λ > 0 is an interior transmission eigenvalue in the sense of Defi-
nition 1.2 if and only if the following statement is true:

∃ v 6= 0 ∈ H2
0 (D) : aλ(v,Ψ) = 0 ∀ Ψ ∈ H2

0 (D)

where

aλ(v,Ψ) :=

∫∫
D

(∆ + λ(1 + q))v(∆ + λ(1 + p))Ψ
dx

q − p (3.1)

Proof. First let λ > 0 be an interior transmission eigenvalue.
In this case we define v := w − u with w and u as in Definition 1.2.
We observe that v ∈ H2

0 (D) and v 6= 0. To see this assume v = 0. Then u = w
in D and thus λqu = λpu in the weak sense (Compare to 2. and 3. of Definition
1.2). But then λ(q−p)u = 0 is also valid in the weak sense, which means that fully
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Chapter 3 Countability

written we have

0 =

∫∫
D

u · λ(q − p)Ψ dx ∀ Ψ ∈ H2
0 (D)

From Lemma 2.53, λ > 0 and q − p ≥ q0 > 0 we can conclude u = 0. Then
w = v + u = 0 which is a contradiction to u,w being nontrivial.

Now we can compute that

(∆ + λ(1 + q))v = (∆ + λ(1 + q))(w − u)

= (∆ + λ(1 + q))w − 0

= (∆ + λ(1 + p))w + λ(q − p)w
= 0 + λ(q − p)w
= λ(q − p)w

is valid in the weak sense.
This means that fully written we have for all Ψ ∈ H2

0 (D) with the help of Green’s
second formula (Theorem 2.55)∫∫

D

w · λ(q − p)Ψ dx =

∫∫
D

v · (∆ + λ(1 + q))Ψ dx

=

∫∫
D

v ·∆Ψ dx+

∫∫
D

v · λ(1 + q)Ψ dx

=

∫∫
D

∆v ·Ψ dx+

∫∫
D

vλ(1 + q) ·Ψ dx

=

∫∫
D

(∆ + λ(1 + q))v ·Ψ dx

=⇒ 0 =

∫∫
D

(wλ(q − p)− (∆ + λ(1 + q))v)Ψ dx

Using Lemma 2.53 again we can conclude

0 = wλ(q − p)− (∆ + λ(1 + q))v

in L2(D). And from here we directly see that∫∫
D

wλ(q − p) · 1

q − p(∆ + λ(1 + p))Ψ dx

=

∫∫
D

(∆ + λ(1 + q))v · 1

q − p(∆ + λ(1 + p))Ψ dx
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is valid for all Ψ in H2
0 (D). The left hand side of this equation is zero by choice of w

and the right hand side is equal to aλ(v,Ψ) by definition of aλ. Thus the condition

aλ(v,Ψ) = 0 ∀ Ψ ∈ H2
0 (D)

of the theorem is fulfilled.

Now let λ > 0 and let there be a v 6= 0 ∈ H2
0 (D) such that aλ(v,Ψ) = 0 for

all Ψ ∈ H2
0 (D). In this case we have to show that λ is an interior transmission

eigenvalue. We set

w :=
1

λ(q − p)(∆ + λ(1 + q))v (3.2)

and observe w ∈ L2(D) as well as

0 = aλ(v,Ψ) ∀ Ψ ∈ H2
0 (D)

=⇒ 0 =
1

λ
aλ(v,Ψ) =

∫∫
D

w(∆ + λ(1 + p))Ψ dx ∀ Ψ ∈ H2
0 (D) (3.3)

or (∆ + λ(1 + p))w = 0 in the weak sense.
Defining u := w− v ∈ L2(D) we see u−w = −v ∈ H2

0 (D) and utilizing (3.3), (3.2)
as well as Theorem 2.55 we can calculate∫∫

D

u(∆ + λ(1 + q))Ψ dx

=

∫∫
D

(w − v)(∆ + λ(1 + q))Ψ dx

=

∫∫
D

wλ(q − p)Ψ + w(∆ + λ(1 + p))Ψ− v(∆ + λ(1 + q))Ψ dx

=

∫∫
D

wλ(q − p)Ψ− v(∆ + λ(1 + q))Ψ dx

=

∫∫
D

(∆ + λ(1 + q))v ·Ψ− v(∆ + λ(1 + q))Ψ dx

=

∫∫
D

∆v ·Ψ− v∆Ψ dx

= 0
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for all Ψ ∈ H2
0 (D). In other words now we also have (∆ + λ(1 + q))u = 0 in the

weak sense.
u−w = −v ∈ H2

0 (D) includes the boundary conditions of Definition 1.2 as discussed
in the paragraph after Lemma 2.54.
Furthermore u,w are nontrivial because otherwise we would have v = w−u = 0 in
contradiction to v 6= 0.
Hence λ satisfies all of the conditions of Definition 1.2 and thereby is an interior
transmission eigenvalue.

With Theorem 3.1 established we now continue our analysis along the lines of
[9] to achieve the desired result of countability of the interior transmission eigen-
values. Our goal is to show that the interior transmission eigenvalues are also the
eigenvalues of a compact operator and then use Theorem 2.22.

First we split up the bilinear form aλ of Theorem 3.1

aλ(v,Ψ) =

∫∫
D

(∆ + λ(1 + q))v(∆ + λ(1 + p))Ψ
dx

q − p

=

∫∫
D

∆v∆Ψ
dx

q − p

+ λ

∫∫
D

(1 + q)v∆Ψ + (1 + p)Ψ∆v
dx

q − p︸ ︷︷ ︸
=:b1(v,Ψ)

+ λ2

∫∫
D

(1 + q)(1 + p)vΨ
dx

q − p︸ ︷︷ ︸
=:b2(v,Ψ)

= a0(v,Ψ) + λb1(v,Ψ) + λ2b2(v,Ψ) (3.4)

We now want to apply our version of Riesz’ representation theorem (Theorem 2.37)
to b1 and b2. In order to do so we need to ensure that both b1 and b2 are linear and
bounded in both variables.
Recall that in Theorem 2.57 we confirmed H2

0 (D) with the norm 〈., .〉H2
0 (D) to be a

Hilbert space, this is the space that we use Theorem 2.37 on.
Tackling the boundedness we observe with the help of the Cauchy-Schwarz inequal-
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ity (Lemma 2.4) for L2(D) and Lemma 2.58 as an additional tool

|b1(v,Ψ)| =|
∫∫
D

(1 + q)v∆Ψ + (1 + p)Ψ∆v
dx

q − p |

≤
∫∫
D

|1 + q||v∆Ψ|+ |1 + p||Ψ∆v| dx

q − p

≤ ‖1 + q‖L∞(D)

∫∫
D

|v∆Ψ| dx

q − p + ‖1 + p‖L∞(D)

∫∫
D

|Ψ∆v| dx

q − p

= ‖1 + q‖L∞(D)

∫∫
D

| v

(q − p) 1
2

| · | ∆Ψ

(q − p) 1
2

| dx

+ ‖1 + p‖L∞(D)

∫∫
D

| Ψ

(q − p) 1
2

| · | ∆v

(q − p) 1
2

| dx

≤ ‖1 + q‖L∞(D)(

∫∫
D

| v

(q − p) 1
2

|2 dx)
1
2 · (
∫∫
D

| ∆Ψ

(q − p) 1
2

|2 dx)
1
2

+ ‖1 + p‖L∞(D)(

∫∫
D

| Ψ

(q − p) 1
2

|2 dx)
1
2 · (
∫∫
D

| ∆v

(q − p) 1
2

|2 dx)
1
2 (3.5)

≤ 1√
c
‖1 + q‖L∞(D)‖v‖H2

0 (D)‖Ψ‖H2
0 (D)

+
1√
c
‖1 + p‖L∞(D)‖v‖H2

0 (D)‖Ψ‖H2
0 (D)

≤ c1 ‖v‖H2
0 (D)‖Ψ‖H2

0 (D)

where c is the constant from Lemma 2.58 and c1 := 1√
c
(‖1+q‖L∞(D) +‖1+p‖L∞(D)).

Similarly

|b2(v,Ψ)| = |
∫∫
D

(1 + q)(1 + p)vΨ
dx

q − p |

≤ ‖(1 + q)(1 + p)‖L∞(D)︸ ︷︷ ︸
=:c3

∫∫
D

| v

(q − p) 1
2

| · | Ψ

(q − p) 1
2

| dx

≤ c3(

∫∫
D

| v

(q − p) 1
2

|2 dx)
1
2 · (
∫∫
D

| Ψ

(q − p) 1
2

|2 dx)
1
2 (3.6)

≤ 1

c
c3 ‖v‖H2

0 (D)‖Ψ‖H2
0 (D)

= c2 ‖v‖H2
0 (D)‖Ψ‖H2

0 (D)

where c2 := 1
c
· c3.

Linearity of the functionals passes on directly from the linearity of the Lebesgue
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integral and the linearity of the Laplace operator and can be easily seen without
detailed calculation.

Hence Theorem 2.37 ensures that there exist bounded linear operators
B1, B2 : H2

0 (D)→ H2
0 (D) such that

b1(v,Ψ) = 〈B1v,Ψ〉H2
0 (D) ∀ v,Ψ ∈ H2

0 (D) (3.7)

b2(v,Ψ) = 〈B2v,Ψ〉H2
0 (D) ∀ v,Ψ ∈ H2

0 (D) (3.8)

Utilizing this we are able to calculate an equivalent condition for that in Theorem
3.1.

0 = aλ(v,Ψ) ∀ Ψ ∈ H2
0 (D)

⇐⇒ 0 = a0(v,Ψ) + λb1(v,Ψ) + λ2b2(v,Ψ) ∀ Ψ ∈ H2
0 (D)

⇐⇒ 0 = 〈v,Ψ〉H2
0 (D) + λ〈B1v,Ψ〉H2

0 (D) + λ2〈B2v,Ψ〉H2
0 (D) ∀ Ψ ∈ H2

0 (D)

⇐⇒ 0 = 〈v + λB1v + λ2B2v,Ψ〉H2
0 (D) ∀ Ψ ∈ H2

0 (D)

⇐⇒ 0 = v + λB1v + λ2B2v

Where in the last step ⇐ is clear and for ⇒ we can put Ψ := v + λB1v + λ2B2v.
In order not to get confused later, we summarize our progress so far.

Theorem 3.2. λ > 0 is an interior transmission eigenvalue in the sense of Defi-
nition 1.2 if and only if there exists v ∈ H2

0 (D), v 6= 0 such that

0 = v + λB1v + λ2B2 (3.9)

where B1 and B2 are the operators with 3.7 and 3.8 as defined above.

Lemma 3.3. Both B1 and B2 are self-adjoint.

Proof. We calculate that b1 is symmetric.

b1(v,Ψ)− b1(Ψ, v) =

∫∫
D

(1 + q)v∆Ψ + (1 + p)Ψ∆v
dx

q − p

−
∫∫
D

(1 + q)Ψ∆v + (1 + p)v∆Ψ
dx

q − p

=

∫∫
D

(1 + q − (1 + p))v∆Ψ + (1 + p− (1 + q))Ψ∆v
dx

q − p

=

∫∫
D

v∆Ψ dx−
∫∫
D

Ψ∆v dx

= 0
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is true for any v,Ψ ∈ H2
0 (D) by Theorem 2.55. As b2 is obviously symmetric, we

see from 3.7 and 3.8

〈Biv,Ψ〉H2
0 (D) = bi(v,Ψ) = bi(Ψ, v) = 〈BiΨ, v〉H2

0 (D) = 〈v,BiΨ〉H2
0 (D)

for all v,Ψ ∈ H2
0 (D) and i ∈ {1, 2}. This means that B1 and B2 are self-adjoint.

Furthermore B2 is nonnegative due to q, p, q − p > 0.

〈B2v, v〉H2
0 (D) = b2(v, v) =

∫∫
D

(1 + q)(1 + p)v2 dx

q − p ≥ 0 ∀ v ∈ H2
0 (D)

Now Lemma 2.14 ensures that there exists an Operator B
1
2
2 ∈ B+ [H] such that

B
1
2
2 B

1
2
2 = B2. We define z := λB

1
2
2 v and observe

(3.9) ⇐⇒ 0 = z − λB
1
2
2 v,

0 = v + λB1v + λB
1
2
2 z

⇐⇒
(

0
0

)
=

(
v
z

)
+ λ

(
B1 B

1
2
2

−B
1
2
2 0

)
︸ ︷︷ ︸

=:B

(
v
z

)
(3.10)

⇐⇒ B

(
v
z

)
= −1

λ

(
v
z

)
Hence for every interior transmission eigenvalue λ > 0 via Theorem 3.2 and the
above calculations − 1

λ
is an eigenvalue of the matrix operator B.

Looking at it from the other direction this means that the only candidates for
interior transmission eigenvalues are of the form − 1

τ
where τ < 0 has to be an

eigenvalue of B.
Let conversely τ < 0 be an eigenvalue of B with eigenvector (x, y)T 6= 0. Then

we see from the definition of B

−B
1
2
2 x = τy

and hence x 6= 0. Were x = 0 then y = 0 in contradiction to (x, y)T 6= 0. Further-
more

B1x+B
1
2
2 y = τx

=⇒ 0 = x− 1

τ
B1x−

1

τ
B

1
2
2 y = x− 1

τ
B1x+ (−1

τ
)2B2x

By Theorem 3.2 we see that − 1
τ

is an interior transmission eigenvalue because τ is
negative.

Putting all this together we get the following theorem.
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Theorem 3.4. The set of interior transmission eigenvalues in the sense of Defi-
nition 1.2 is equal to the set {− 1

τ
| τ < 0 is an eigenvalue of B} with the matrix

operator

B : H2
0 (D)×H2

0 (D)→ H2
0 (D)×H2

0 (D)

as defined in (3.10).

3.2 Deduction

Since we now have Theorem 3.4, we want to learn a little bit more about the
spectrum of B. As mentioned before, the way we intend to do that is to show that
B is a compact operator and then apply Theorem 2.22. First we show that the
matrix entries of B are compact.

Lemma 3.5. Both B1 and B2 are compact with respect to ‖.‖H2
0 (D).

Proof. Similarly to [10, Section 4.5] we use the characterisation of compactness
given in Lemma 2.19.
Let (xn)n∈N ⊂ H2

0 (D) be a sequence that converges weakly to zero.
Utilizing (3.7), our earlier calculation (3.5) and q − p ≥ q0 we can conclude

‖B1xn‖2
H2

0 (D) = 〈B1xn, B1xn〉H2
0 (D) = b1(xn, B1xn)

≤ ‖1 + q‖L∞(D)(

∫∫
D

| xn

(q − p) 1
2

|2 dx)
1
2 · (
∫∫
D

| ∆B1xn

(q − p) 1
2

|2 dx)
1
2

+ ‖1 + p‖L∞(D)(

∫∫
D

| B1xn

(q − p) 1
2

|2 dx)
1
2 · (
∫∫
D

| ∆xn

(q − p) 1
2

|2 dx)
1
2

≤ ‖1 + q‖L∞(D)
1√
q0

‖xn‖L2(D)‖B1xn‖H2
0 (D)

+ ‖1 + p‖L∞(D)
1√
q0

‖B1xn‖L2(D)‖xn‖H2
0 (D) (3.11)

(‖xn‖H2
0 (D))n∈N is bounded by Lemma 2.18 because (xn)n∈N is a weakly convergent

series in H2
0 (D) and that means (‖B1xn‖H2

0 (D))n∈N is bounded as well since B1 is a

bounded operator on H2
0 (D).

Besides xn
w→ 0 in H2

0 (D) we also have B1xn
w→ 0 in H2

0 (D). To see this let
f ∈ H2

0 (D)∗.

fB1(αx+ y) = f(B1(αx+ y)) = f(αB1x+B1y)

= αf(B1x) + f(B1y) = αfB1(x) + fB1(y)
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is true for all α ∈ R and for all x, y ∈ H2
0 (D). Hence fB1 ∈ H2

0 (D)∗ and thus
f(B1xn) = fB1(xn) → 0 because xn

w→ 0 in H2
0 (D). As f ∈ H2

0 (D)∗ was chosen
arbitrarily we have B1xn

w→ 0 in H2
0 (D).

With both xn
w→ 0 and B1xn

w→ 0 in H2
0 (D) we can finally conclude that

‖xn‖L2(D) → 0 and ‖B1xn‖L2(D) → 0 by H2
0 (D)

c
↪→ L2(D) (Lemma 2.64) and

Lemma 2.65.
Hence (3.11) implies ‖B1xn‖2

H2
0 (D)
→ 0 from where we can conclude that B1 is

compact by Lemma 2.19.
For the compactness of B2 let (xn)n∈N ⊂ H2

0 (D) such that xn
w→ 0 yet again.

Apply the same argument as above to see that B2xn
w→ 0 in H2

0 (D). Recalling our
earlier calculation (3.6) as well as (3.8) we have similar to (3.11)

‖B2xn‖2
H2

0 (D) = 〈B2xn, B2xn〉H2
0 (D) = b2(xn, B2xn)

≤ c3

q0

‖xn‖L2(D)‖B2xn‖L2(D)

Once more utilizing H2
0 (D)

c
↪→ L2(D) and Lemma 2.65 we see ‖B2xn‖L2(D) → 0 as

well as ‖xn‖L2(D) → 0 and thus ‖B2xn‖H2
0 (D) → 0. As above Lemma 2.19 gives us

the compactness of B2 from here.

Lemma 3.6. B
1
2
2 and thus also −B

1
2
2 are compact.

Proof. As we have already proven all the prerequisites, this is a simple application
of Lemma 2.20.

Because 0 is obviously compact with respect to any norm as it maps every se-
quence onto the constant sequence (0)n∈N, all the matrix entries of B are compact
with respect to ‖.‖H2

0 (D).

Since B is an operator from H2
0 (D) × H2

0 (D) onto itself we need to equip that
space with an inner product. Similar to the situation in Euclidean geometry we
can define an inner product on H2

0 (D)×H2
0 (D) through

〈(a, b), (c, d)〉H2
0 (D)×H2

0 (D) := 〈a, c〉H2
0 (D) + 〈b, d〉H2

0 (D)

for all (a, b), (c, d) ∈ H2
0 (D) × H2

0 (D). That 〈., .〉H2
0 (D)×H2

0 (D) actually satisfies the
conditions to be an inner product (see Definition 2.2) can be seen by some some
very straightforward calculations or, as we will do it, by looking at it very sharply.
H2

0 (D) × H2
0 (D) is a Hilbert space, since if ((an, bn))n∈N ⊂ H2

0 (D) × H2
0 (D) is a

Cauchy sequence with respect to the norm

‖(a, b)‖H2
0 (D)×H2

0 (D) =
√
‖a‖2

H2
0 (D)

+ ‖b‖2
H2

0 (D)

this implies that (an)n∈N and (bn)n∈N are Cauchy sequences in H2
0 (D) respectively.

Then ‖an − a∞‖H2
0 (D) → 0 and ‖bn − b∞‖H2

0 (D) → 0 for some a∞, b∞ ∈ H2
0 (D) due
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Chapter 3 Countability

to the completeness of H2
0 (D) and from that ‖(an, bn)− (a∞, b∞)‖H2

0 (D)×H2
0 (D) → 0

is obvious. Hence every Cauchy sequence converges in H2
0 (D)×H2

0 (D).

Lemma 3.7. B as defined in (3.10) is a compact linear operator from H2
0 (D) ×

H2
0 (D) onto itself.

Proof. The linearity of B comes from the linearity of all of it’s entries and can be
seen, again, by looking sharply.

B =

(
B1 B

1
2
2

−B
1
2
2 0

)
=

(
B1 0
0 0

)
︸ ︷︷ ︸

=:M1

+

(
0 B

1
2
2

0 0

)
︸ ︷︷ ︸

=:M2

+

(
0 0

−B
1
2
2 0

)
︸ ︷︷ ︸

=:M3

(3.12)

We have already shown that B1 as well as B
1
2
2 and −B

1
2
2 are compact (Lemma 3.5

and Lemma 3.6). Using this we can prove that all summands on the right hand
side of (3.12) are compact.

Let ((an, bn))n∈N ⊂ H2
0 (D)×H2

0 (D) be a bounded sequence. Then both (an)n∈N
and (bn)n∈N are bounded sequences in H2

0 (D).
Because B1 is compact there exists a subsequence (B1ank)k∈N of (B1an)n∈N and

an a∞ ∈ H2
0 (D) such that B1ank → a∞ as k goes to infinity.

‖
(
B1 0
0 0

)(
ank
bnk

)
−
(
a∞
0

)
‖2
H2

0 (D)×H2
0 (D) = ‖B1ank − a∞‖2

H2
0 (D)

The right hand side goes to zero as k goes to infinity, so we have found a convergent
subsequence of M1(an, bn) and hence M1 is compact. Compactness of M2 and M3

follows by the exact same argument and from here the compactness of B follows
by Lemma 2.21.

Since we have now shown that B is a compact operator on a Hilbert space, the
conclusions of Theorem 2.22 about it’s spectrum hold true. In particular the set
of eigenvalues of B is countable and has zero as only possible accumulation point.
Combine this with Theorem 3.4 and we can summarize all of our work in this
chapter.

Theorem 3.8. Under the restrictions of Definition 1.1 the interior transmission
eigenvalues in the sense of Definition 1.2 are countable. Their only possible accu-
mulation point is infinity.
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Existence

Having one of the two main goals of this thesis achieved with Theorem 3.8, we now
want to show the existence of a real positive interior transmission eigenvalue in the
sense of Definition 1.2 under certain conditions. Similarly to chapter 3 we base
our analysis on literature covering the case p = 0, namely [3]. We will do things
slightly different this time though, because we are not going to modify the analysis
of [3]. Instead we will apply the result from there in a weakened form to a suitable
setting, repeat the idea of [3] in that setting and then carry on along the lines of
[9].

Theorem 4.1. Let F ⊆ R2 be an open disc and let q ∈ L∞(F ) satisfy one of the
following two conditions:

a) q ≥ q0 for some q0 > 0 almost everywhere in F

b) −1 + q1 ≤ q ≤ −q2 for some q1, q2 > 0 almost everywhere in F

Then there exist λ > 0 and nontrivial u,w ∈ L2(F ) such that

1. u− w ∈ H2
0 (F )

2. ∆u+ λ(1 + q)u = 0 in F

3. ∆w + λw = 0 in F

4. u = w and ∂u
∂ν

= ∂w
∂ν

on the boundary ∂F of F

where 2. and 3. have to be understood in the weak sense, i.e.

0 =

∫∫
F

u · (∆ + λ(1 + q))Ψ dx ∀ Ψ ∈ H2
0 (F )

0 =

∫∫
F

w · (∆ + λ)Ψ dx ∀ Ψ ∈ H2
0 (F )
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Chapter 4 Existence

Theorem 4.1 is the aforementioned weakened version of [3, Theorem 3.1]. Weak-
ened because [3] assumes a more general domain than we do and [3] also allows for
q1 = 0 in condition b). By demanding q1 > 0 we accept a slight loss of generality
compared to [3], but gain a huge advantage that will become apparent in section
4.3. Also, since in our setting Theorem 4.1 is mostly a tool to prove the main
theorem of this chapter, Theorem 4.7, the loss of generality does not concern us
much.

We postpone proving Theorem 4.1 until the end of this chapter and immediately
start the discussion how it can be translated into our setting.

Following [9] we define Aλ : H2
0 (D)→ H2

0 (D) for arbitrary λ > 0 through

Aλ := I + λB1 + λ2B2 (4.1)

where I : H2
0 (D) → H2

0 (D) is the identity mapping and B1 and B2 are the same
as in chapter 3, recall (3.7) and (3.8). Furthermore aλ is again the form defined
through (3.1). Recalling the calculations that lead to Theorem 3.2 we see

〈Aλv,Ψ〉H2
0 (D) = 〈(I + λB1 + λ2B2)v,Ψ〉H2

0 (D)

= 〈Iv,Ψ〉H2
0 (D) + 〈λB1v,Ψ〉H2

0 (D) + 〈λ2B2v,Ψ〉H2
0 (D)

= a0(v,Ψ) + λb1(v,Ψ) + λ2b2(v,Ψ)

= aλ(v,Ψ) (4.2)

for all v,Ψ in H2
0 (D). Similarly to [9] we intend to find a τ > 0 and a v ∈ H2

0 (D)
such that aτ (v, v) < 0. This would imply 〈Aτv, v〉H2

0 (D) < 0 and going from there
will be able to conclude that there exists a 0 < λ < τ such that Aλ has zero as an
eigenvalue. Via theorem 3.2 such a λ is then an interior transmission eigenvalue.

4.1 Construction

Let us search for said τ and v first. Recall from Definition 1.1 that we have

q ≥ p+ q0 ≥ q0 > 0

almost everywhere in D. Choose an open disc F ⊆ D, εp > 0 and define

p0 := ‖p̃‖L∞(F ) + εp

where p̃ denotes the restriction of p on F .
What we also need is the following q̃ ∈ L∞(F ) for which we immediately calculate
an inequality.

q̃ :=
1 + p̃

1 + p0

− 1 ≤ 1 + p0 − εp
1 + p0

− 1 = − εp
1 + p0

< 0 almost everywhere in F
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4.1 Construction

Furthermore

−1 +
1

1 + p0

≤ −1 +
1 + p̃

1 + p0

= q̃ almost everywhere in F

We observe that q̃ satisfies condition b) of Theorem 4.1 applied to F . Theorem 4.1
gives us a λ > 0 and nontrivial ũ, w̃ ∈ L2(F ) such that

(i) ũ− w̃ ∈ H2
0 (F )

(ii) ∆ũ+ λ(1 + q̃)ũ = 0 in F

(iii) ∆w̃ + λw̃ = 0 in F

with (ii) and (iii) in the weak sense. Plugging in the definition of q̃ we have

(ii) ⇐⇒ ∆ũ+ λ(
1 + p̃

1 + p0

)ũ = 0 in F

We set ṽ := ũ− w̃, extend u and w to all of D by zero

u :=

{
ũ in F

0 in D \ F w :=

{
w̃ in F

0 in D \ F

and realize that u,w ∈ L2(D) because of∫∫
D

|u|2 dx =

∫∫
F

|u|2 dx+

∫∫
D\F

|u|2 dx =

∫∫
F

|u|2 dx

and the same calculation for w.

Lemma 4.2. v := u− w ∈ H2
0 (D)

Proof. (i) says that ṽ := ũ− w̃ ∈ H2
0 (F ). Hence by Definition 2.51 there must exist

a sequence (ϕ̃n) ⊂ C∞0 (F ) that converges to ṽ in the ‖.‖2 norm on F . Extending
the ϕ̃n to all of D by zero

ϕn :=

{
ϕ̃n in F

0 in D \ F

for all n ∈ N we have (ϕn) ⊂ C∞0 (D). This is because outside of F ϕn = 0 is clearly
C∞, inside of F ϕn = ϕ̃n is C∞ by choice of ϕ̃n and for x on the boundary ∂F
of our open disc F we can find some ε > 0 such that the disc K(x, ε) of radius ε
centered around x is disjoint to the compact support of ϕ̃n. Then ϕn = 0 in K(x, ε)
and hence ϕn is C∞ in x.

Because both v and ϕn are equal to zero in D\F , we see from Definition 2.46
that the norm ‖v − ϕn‖2 in D is equal to the norm ‖ṽ − ϕ̃n‖2 in F .

But as ϕ̃n → ṽ with respect to ‖.‖2 in F that means ϕn → v with respect to ‖.‖2

in D. Hence v ∈ H2
0 (D).

45



Chapter 4 Existence

Setting τ := λ
1+p0

we have λ = τ(1 + p0) and see (ii)⇐⇒ (v), (iii)⇐⇒ (vi) with

(v) ∆ũ+ τ(1 + p̃)ũ = 0 in F

(vi) ∆w̃ + τ(1 + p0)w̃ = 0 in F

Now almost everything is in place for our calculation to show that aτ (v, v) < 0, the
only thing missing is the restriction q ≥ p0 in F . We assume that is valid for the
moment and observe

aτ (v, v) =

∫∫
D

(∆ + τ(1 + q))v(∆ + τ(1 + p))v
dx

q − p

=

∫∫
F

(∆ + τ(1 + q))v(∆ + τ(1 + p))v
dx

q − p

=

∫∫
F

(∆ + τ(1 + p+ (q − p)))v(∆ + τ(1 + p))v
dx

q − p

=

∫∫
F

((∆ + τ(1 + p))v)2 + τ(q − p)v(∆ + τ(1 + p))v
dx

q − p

=

∫∫
F

((∆ + τ(1 + p))v)2 dx

q − p +

∫∫
F

τv(∆ + τ(1 + p))v dx

≤
∫∫
F

((∆ + τ(1 + p))v)2 dx

p0 − p
+

∫∫
F

τv(∆ + τ(1 + p))v dx

=

∫∫
F

(∆ + τ(1 + p0))v(∆ + τ(1 + p))v
dx

p0 − p

+

∫∫
F

τ(p− p0)v(∆ + τ(1 + p))v
dx

p0 − p
+

∫∫
F

τv(∆ + τ(1 + p))v dx

=

∫∫
F

(∆ + τ(1 + p0))v(∆ + τ(1 + p))v
dx

p0 − p

=

∫∫
F

(∆ + τ(1 + p0))ṽ(∆ + τ(1 + p))ṽ
dx

p0 − p̃

= aFτ (ṽ, ṽ) (4.3)

where aFτ is the bilinear form corresponding to Theorem 3.1 applied to the problem
in F with scattering object qF = p0 and background medium pF = p̃.

Note that p0 ≥ p̃(x) + εp ≥ εp > 0 for almost all x ∈ F and recall that we have
τ > 0 and ũ, w̃ ∈ L2(F ) with the properties (i), (vi) and (v). Compare this to our
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4.1 Construction

definitions 1.1 and 1.2 and observe that τ is indeed an interior transmission eigen-
value for this new problem with p0, p̃, εp, F, τ, ũ, w̃ corresponding to the variables
q, p, q0, D, λ, u, w of our definitions 1.1 and 1.2 in that order.

In the proof of Theorem 3.1 we showed that by defining v := w − u we get
aλ(v,Ψ) = 0 for all Ψ ∈ H2

0 (D) for our usual notation provided λ is an interior
transmission eigenvalue. Through mere renaming we can thus conclude that for
ṽ = ũ − w̃ we have aFτ (ṽ,Ψ) = 0 for all Ψ ∈ H2

0 (F ) and in particular aFτ (ṽ, ṽ) = 0
because ṽ ∈ H2

0 (F ). With this knowledge (4.3) becomes

aτ (v, v) ≤ 0 (4.4)

As said before the calculation for (4.3) we needed q ≥ p0 in F here. Now we profit
from our indecisive choice of F and εp. Recall that p0 = ‖p̃‖L∞(F ) + εp for a freely
chosen εp > 0. Since in Definition 1.1 we already assumed p, q ∈ L∞(D) as well as
q(x) ≥ p(x) + q0 for almost all x ∈ D and a q0 > 0, fulfilling the restriction q ≥ p0

for some disc F ⊆ D and some εp > 0 is basically always possible.
But as at this point we do not want to start an expedition into the land of

measure theory, we simply demand piecewise continuity for q and p. The following
lemma summarizes our progress thus far.

Lemma 4.3. Assume additionally to the setting in Definition 1.1 that p and q are
piecewise continuous, i.e. continuous everywhere in D except in a finite number of
points. Then there exist an open disc F ⊆ D and an εp > 0 such that q ≥ p0 in F
where p0 := ‖p̃‖L∞(F ) + εp and p̃ denotes the restriction of p onto F .
In this case there exist v ∈ H2

0 (D) and τ > 0 such that aτ (v, v) ≤ 0.

Proof. Because q is piecewise continuous we find an open disc K1 ⊆ D such that
q is continuous in K1. Due to p being piecewise continuous in D and thus also in
K1, we find an open disc K2 ⊆ K1 such that p is continuous in K2. Choose any
x ∈ K2. Because q and p are continuous in K2 we can find r > 0 such that both

|q(y)− q(x)| ≤ q0

4
∀y ∈ K2 such that ‖x− y‖ ≤ r

|p(y)− p(x)| ≤ q0

4
∀y ∈ K2 such that ‖x− y‖ ≤ r

where ‖.‖ denotes the Euclidean norm in R2. Finally we choose an open disc
F ⊆ K2 centered around x with a radius not larger than r and εp := q0

2
. Observe

that for all y, z ∈ F
q(y) ≥ q(x)− q0

4
≥ p(x) + q0 −

q0

4
≥ p(z)− q0

4
+ q0 −

q0

4
= p(z) + εp

and hence

q ≥ ‖p̃‖L∞(F ) + εp

The second part of the lemma is then merely a summary what we have already
proven in this section and can be seen from (4.4).
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4.2 Deduction

Now we need to conclude how aτ (v, v) ≤ 0 leads to the existence of an interior
transmission eigenvalue for our original problem. We will be following [9] closely.
Throughout the section τ > 0 will be the one from Lemma 4.3 while λ > 0 is
variable. From (4.2) we have

〈Aτv, v〉H2
0 (D) = aτ (v, v) ≤ 0 (4.5)

where Aλ = I + λB1 + λ2B2 as defined in (4.1). In Lemma 3.5 we have shown that
both B1 and B2 are compact operators with respect to ‖.‖H2

0 (D) which leads us to
the conclusion that

Cλ := λB1 + λ2B2

also is a compact operator for any λ ∈ R by Lemma 2.21.
Lemma 3.3 ensures that both Aλ and Cλ are self-adjoint as one can easily see from

Definition 2.11 that any linear combination of self-adjoint operators is self-adjoint.
We use Lemma 2.34 to transport everything in the complex Hilbert space H̃2

0 (D)
and observe for any λ ∈ R that because Aλ and Cλ are self-adjoint, Ãλ and C̃λ are
as well and that because Cλ is compact, so is C̃λ.

Lemma 4.4. For any λ ∈ R the spectrum of Ãλ consists of eigenvalues of Ãλ and
possibly the 1 which is it’s only possible accumulation point.
In particular σ(Ã0) = {1}
Proof. We apply Theorem 2.22 on C̃λ and see that σ(C̃λ) consists of eigenvalues of
C̃λ and possibly the zero which is also it’s only possible accumulation point.
By Definition 2.23, α ∈ C is in the resolvent set ρ(Ãλ) if and only if αI − Ãλ has a
bounded inverse. However

αI − Ãλ = αI − (I + C̃λ) = (α− 1)I − C̃λ

implies that this the case if and only if α− 1 ∈ ρ(C̃λ). Hence

σ(Ãλ) = C\ρ(Ãλ) = C\{α ∈ C | α− 1 ∈ ρ(C̃λ)}
= {α ∈ C | α− 1 /∈ ρ(C̃λ)} = {α ∈ C | α− 1 ∈ σ(C̃λ)}

which proves that 1 is the only possible accumulation point of σ(Ãλ).
Let α ∈ σ(Ãλ)\{1}. Then α − 1 6= 0 is an eigenvalue of C̃λ. Choose a corre-

sponding eigenvector x and observe

Ãλx = (I + C̃λ)x = Ix+ C̃λx = x+ (α− 1)x = αx

or in other words α is an eigenvalue of Ãλ. Seeing that 1 is the only eigenvalue of
Ã0 = I concludes the proof.
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Lemma 4.5. Aτ and Ãτ have a nonpositive real eigenvalue.

Proof. We profit from Aτ = I+Cτ where Cτ is compact and self-adjoint. Theorem
2.24 ensures that we can write

Cτ =
∑
k

λk〈., ek〉H2
0 (D)ek

where the λk 6= 0 are eigenvalues of C and the corresponding eigenvectors ek form
an orthonormal system. This sum is not void because if Cτ were zero then from
(4.5) 〈v, v〉H2

0 (D) ≤ 0 in contradiction to v 6= 0. Applying that characterization of
Cτ to (4.5) we can calculate

0 ≥ 〈Aτv, v〉H2
0 (D) = 〈(I + Cτ )v, v〉H2

0 (D) = 〈v, v〉H2
0 (D) + 〈Cτv, v〉H2

0 (D)

= 〈v, v〉H2
0 (D) + 〈

∑
k

λk〈v, ek〉H2
0 (D)ek, v〉H2

0 (D)

= 〈v, v〉H2
0 (D) +

∑
k

λk〈v, ek〉H2
0 (D)〈ek, v〉H2

0 (D) (4.6)

Assume λk > −1 for all k. In this case (4.6) becomes

0 ≥ 〈v, v〉H2
0 (D) +

∑
k

λk〈v, ek〉H2
0 (D)〈ek, v〉H2

0 (D)

> 〈v, v〉H2
0 (D) +

∑
k

−〈v, ek〉H2
0 (D)〈ek, v〉H2

0 (D) (4.7)

because 〈v, ek〉2H2
0 (D)
≥ 0 and at least one of the 〈v, ek〉H2

0 (D) is not zero. Were they

all zero, then Cv = 0 and hence 0 ≥ 〈Aτv, v〉H2
0 (D) = 〈v, v〉H2

0 (D) in contradiction to
v 6= 0. According to Lemma 2.25 we can write

v = y +
∑
k

〈v, ek〉H2
0 (D)ek

for some y in the kernel of Cτ . Keep in mind that according to Lemma 2.25 y is
orthogonal to

∑
k

〈v, ek〉H2
0 (D)ek and that the ek form an orthonormal system.

〈v, v〉H2
0 (D) = 〈y +

∑
k

〈v, ek〉H2
0 (D)ek, y +

∑
i

〈v, ei〉H2
0 (D)ei〉H2

0 (D)

= 〈y, y〉H2
0 (D) + 〈

∑
k

〈v, ek〉H2
0 (D)ek,

∑
i

〈v, ei〉H2
0 (D)ei〉H2

0 (D)

≥
∑
k

∑
i

〈v, ei〉H2
0 (D)〈v, ek〉H2

0 (D)〈ek, ei〉H2
0 (D)

=
∑
k

〈v, ek〉H2
0 (D)〈v, ek〉H2

0 (D) (4.8)
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Plugging (4.8) into (4.7) we get 0 > 0 which is a contradiction.
Hence our assumption was wrong and there must be at least one k̃ such that

λk̃ ≤ −1. Let x ∈ H2
0 (D), x 6= 0 be an eigenvector of Cτ to the eigenvalue λk̃.

Aτx = (I + Cτ )x = x+ λk̃x = (1 + λk̃)x

shows us that x is an eigenvector of Aτ to the eigenvalue 1 + λk̃ ≤ 0.
Lemma 2.35 gives the assertion for Ãτ .

Lemma 4.6. There exists λ ∈ R, 0 < λ ≤ τ such that Ãλ has zero as an eigenvalue.

Proof. Let λ ∈ R be arbitrary.
∅ 6= σ(Ãλ) ⊆ R due to Lemma 2.28 and Lemma 2.27 because Ãλ is bounded and
self-adjoint. This combined with the knowledge that minus infinity is not a possible
accumulation point of σ(Ãλ) (Lemma 4.4) ensures that the definition

t : [0, τ ]→ R, t(λ) = inf{α | α ∈ σ(Ãλ)} (4.9)

makes sense. Let δ, γ ∈ [0, τ ]. If t(δ) ≤ t(γ) then by (4.9) we see

|t(δ)− t(γ)| = dist(t(δ), σ(Ãγ)) (4.10)

If t(γ) ≤ t(δ) then analogously by (4.9)

|t(γ)− t(δ)| = dist(t(γ), σ(Ãδ)) (4.11)

Combining (4.10) and (4.11) we have for any δ, γ ∈ [0, τ ]

|t(γ)− t(δ)| ≤ dist(t(δ), σ(Ãγ)) + dist(t(γ), σ(Ãδ)) (4.12)

Looking at (4.9) again we see that either t(δ) ∈ σ(Ãδ) or there exists a sequence in
σ(Ãδ) that converges to t(δ). In either case we have

dist(t(δ), σ(Ãγ)) ≤ sup
α∈σ(Ãδ)

dist(α, σ(Ãγ)) (4.13)

Applying the same argument for t(γ) we get

dist(t(γ), σ(Ãδ)) ≤ sup
α∈σ(Ãγ)

dist(α, σ(Ãδ)) (4.14)

Plugging (4.13) and (4.14) into (4.12) we have for any δ, γ ∈ [0, τ ]

|t(γ)− t(δ)| ≤ sup
α∈σ(Ãδ)

dist(α, σ(Ãγ)) + sup
α∈σ(Ãγ)

dist(α, σ(Ãδ)) (4.15)
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Now observe

Ãδ − Ãγ = (1− 1)I + (δ − γ)B̃1 + (δ2 − γ2)B̃2︸ ︷︷ ︸
=:C̃δ,γ

=⇒ Ãδ = Ãγ + C̃δ,γ (4.16)

C̃δ,γ is self-adjoint as a sum of self-adjoint operators. Apply Theorem 2.29 on (4.16)
to see that for any δ, γ ∈ [0, τ ]

sup
α∈σ(Ãδ)

dist(α, σ(Ãγ)) + sup
α∈σ(Ãγ)

dist(α, σ(Ãδ)) ≤ 2‖C̃δ,γ‖ (4.17)

We plug (4.17) into (4.15) and calculate with the triangle inequality and multi-
plicativity for operator norms (Lemma 2.10)

|t(γ)− t(δ)| ≤ 2‖C̃δ,γ‖ = ‖(δ − γ)B̃1 + (δ2 − γ2)B̃2‖
≤ |δ − γ|‖B̃1‖+ |δ2 − γ2|‖B̃2‖ (4.18)

The right hand side of (4.18) clearly converges to zero as γ → δ which implies that
the left hand side does the same. In other words t is continuous as a function from
[0, τ ] to R.
From Lemma 4.4 we see t(0) = 1 while Lemma 4.5 ensures t(τ) ≤ 0.
The classical intermediate value theorem of analysis in R1 [6, §11] then ensures that
there exists λ ∈ (0, τ ] such that t(λ) = 0. From (4.9) and Lemma 4.4 we see that
0 is in σ(Ãλ) and is indeed an eigenvalue of Ãλ.

By Lemma 2.35 we can convert the result of Lemma 4.6 back in the real case and
now know that there exists λ > 0 such that Aλ has zero as an eigenvalue. After
recalling the Aλ = I + λB1 + λ2B2, Theorem 3.2 ensures that this λ is indeed an
interior transmission eigenvalue.

Again we summarize our progress in this chapter so far.

Theorem 4.7. Under the restrictions of Definition 1.1 and the assumptions of
Lemma 4.3 there exists at least one interior transmission eigenvalues in the sense
of Definition 1.2.

What we are still missing for this to be completely proven however is the proof
of Theorem 4.1 which we will do in our next section.

4.3 Supplement

Although Theorem 4.1 is already proven in [3], we want to give a proof of it here,
because we are now in the comfortable position where we can recycle a lot of what
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we have done earlier. What we still have to do is basically simply to juggle some
numbers.

Setting certain p and q in Definition 1.1 is effortlessly possible and hence we can
use everything said in this thesis so far except section 4.1 (where we have used
Theorem 4.1) for the case where those p and q fulfill the restrictions of Definition
1.1.

Recall that in section 4.2 we used the v ∈ H2
0 (D) and τ > 0 such that aτ (v, v) ≤ 0

constructed in section 4.1 to prove the existence of an interior transmission eigen-
value.

Assume condition a) of Theorem 4.1 holds true for q̃ ∈ L∞(F ). In this case
we set p = 0 and q = q̃ as well as D = F in Definition 1.1 and observe that the
conditions are fulfilled. Thus if we are able to construct v ∈ H2

0 (F ) and τ > 0 such
that the corresponding aτ (v, v) ≤ 0, then this completes the proof of Theorem 4.1.
These will be constructed in Lemma 4.10.

Now assume condition b) of Theorem 4.1 holds true for q ∈ L∞(F ). We quickly
recall it for convenience.

−1 + q1 ≤ q ≤ −q2 almost everywhere in F for some q1, q2 > 0

Sadly we realize that simply setting p = 0 in Definition 1.1 is not enough, because
q does not satisfy the restriction of Definition 1.1. However we can help us with a
trick. Because q1 > 0 there exist k ∈ N such that kq1 ≥ 1. For any such k define

p̃ := k − 1 + kq q̃ := k − 1

and observe

p̃ = k − 1 + kq ≥ k − 1 + k(−1 + q1) = −1 + kq1 ≥ 0

q̃ = k − 1 ≥ k − 1 + k(q + q2) = p̃+ kq2

Going back to Definition 1.1 we observe that q̃ and p̃ satisfy the restrictions with
q0 := kq2 > 0.
Items 1. and 2. of Definition 1.2 become

∆u+ λ(1 + (k − 1))u = 0 ⇐⇒ ∆u+ λku = 0

∆w + λ(1 + (k − 1 + kq))w = 0 ⇐⇒ ∆w + λk(1 + q)w = 0

But if there exists λ > 0 such that this is fulfilled, then λ
k
> 0 fulfills everything

Theorem 4.1 asks for. Hence analogously to the case of condition a) all we need to
do is to construct v ∈ H2

0 (F ) and τ > 0 such that the corresponding aτ (v, v) ≤ 0
to conclude the proof. That will be done in Lemma 4.11.

Similar to [3] we will take the existence of an interior transmission eigenvalue for
constant index of refraction q > 0 and a disc for granted, i.e.
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4.3 Supplement

Lemma 4.8. Let F ⊆ R2 be an open disc and let q > 0 be a constant. Then there
exist λ > 0 and nontrivial u,w ∈ L2(F ) such that

1. u− w ∈ H2
0 (F )

2. ∆u+ λ(1 + q)u = 0 in F

3. ∆w + λw = 0 in F

4. u = w and ∂u
∂ν

= ∂w
∂ν

on the boundary ∂F of F

where 2. and 3. are in the weak sense.

For more information on this see chapter 5.

Lemma 4.9. Let F ⊆ R2 be an open disc and let q > 0 be a constant. Then there
exist λ > 0 and v ∈ H2

0 (F ), v 6= 0 such that∫∫
F

(∆ + λ(1 + q))v(∆ + λ)v dx = 0

Proof. There exists an interior transmission eigenvalue λ > 0 because of Lemma
4.8. Since q > 0, p = 0 and F satisfy the conditions of Definition 1.1, Theorem 3.1
is valid. Applying that theorem concludes the proof.

Lemma 4.10. Let F ⊆ R2 be an open disc and q ∈ L∞(F ) such that q(x) ≥ q0 for
some q0 > 0 and almost all x in F . Then there exist v ∈ H2

0 (F ) and λ > 0 such
that ∫∫

F

(∆ + λ(1 + q))v(∆ + λ)v
dx

q
≤ 0

Proof. ∫∫
F

(∆ + λ(1 + q))v(∆ + λ)v
dx

q

=

∫∫
F

(∆ + λ)v(∆ + λ)v
dx

q
+

∫∫
F

λqv(∆ + λ)v
dx

q

≤
∫∫
F

(∆ + λ)v(∆ + λ)v
dx

q0

+

∫∫
F

λq0v(∆ + λ)v
dx

q0

=
1

q0

∫∫
F

(∆ + λ(1 + q0))v(∆ + λ)v dx (4.19)

By applying Lemma 4.9 we see that there exist v ∈ H2
0 (F ) and λ > 0 such that the

right hand side of (4.19) is zero.
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Lemma 4.11. Let F ⊆ R2 be an open disc. Let furthermore q ∈ L∞(F ) such that
−1 + q1 ≤ q ≤ −q2 in F for q1, q2 > 0 almost everywhere in F . Choose k ∈ N such
that kq1 ≥ 1, kq2 ≥ 1 and k ≥ 2. Then there exist v ∈ H2

0 (F ) and λ > 0 such that∫∫
F

(∆ + λ(1 + k − 1))v(∆ + λ(1 + k − 1 + kq))v
dx

k − 1− (k − 1 + kq)
≤ 0

Proof.∫∫
F

(∆ + λ(1 + k − 1))v(∆ + λ(1 + k − 1 + kq))v
dx

k − 1− (k − 1 + kq)

=

∫∫
F

(∆ + λk)v(∆ + λk(1 + q))v
dx

−kq

=

∫∫
F

(∆ + λk)v(∆ + λk)v
dx

−kq +

∫∫
F

(∆ + λk)vλkqv
dx

−kq

=

∫∫
F

((∆ + λk)v)2 dx

−kq −
∫∫
F

(∆ + λk)vλv dx (4.20)

and due to

q ≤ −q2, kq2 ≥ 1 =⇒ kq ≤ −kq2 ≤ −1 =⇒ −kq ≥ 1 =⇒ 1

−kq ≤ 1

we have, continuing our calculation (4.20),

· · · ≤
∫∫
F

((∆ + λk)v)2 dx−
∫∫
F

(∆ + λk)vλv dx

=

∫∫
F

(∆ + λk)v(∆ + λ(k − 1))v dx (4.21)

Applying Lemma 4.9 to the constant k
k−1
−1 > 0 we get v ∈ H2

0 (F ) and τ > 0 such
that

0 =

∫∫
F

(∆ + τ(1 +
k

k − 1
− 1))v(∆ + τ)v dx

=

∫∫
F

(∆ + τ(
k

k − 1
))v(∆ + τ)v dx

By setting λ := τ
k−1

> 0 we see that the right hand side of (4.21) is zero for this v
and λ.

With these lemmata proven, the proof of Theorem 4.1 is complete and conse-
quently also the proof of the main theorem of this chapter, Theorem 4.7.
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Chapter 5

Open questions

This final chapter will cover some loose ends and provide an outlook on what further
studies would be interesting. When it comes to the latter I will also include studies
that would be interesting for me personally after writing this thesis, even if these
subjects are well covered by literature already and thus might not be interesting
from a researcher’s point of view. As the name of the chapter might already suggest,
we will slightly tone down on the formal aspects and use previously unintroduced
notations and outside knowledge a little bit more liberally than before.

5.1 Constant index of refraction in a disc

The biggest question mark is clearly Lemma 4.8. When it first came up in chapter 4
we were following [3] which states that the lemma is valid. However the proof we are
referred to [5, Theorem 2] is executed in R3 which warrants a closer examination.
[5] restricts the search to spherically symmetric eigenfunctions and likewise we
can restrict the search to radially symmetric eigenfunctions. We can not use the
‘same’ functions though, because the Laplacian in polar coordinates behaves slightly
different than the Laplacian in spherical coordinates.

Unlike [5, Theorem 2] which covers any spherically stratified q, our Lemma 4.8
only is concerned with constant q > 0 which makes things easier. The idea behind
our approach is still taken from [5] though.

Let F ⊆ R2 be an open disc of radius a > 0 and let q > 0 be a constant.
The first thing we want to do is obviously to shift our coordinate system so that
the origin is at the center of F . Having done that we search for strong solutions
u,w ∈ C2(F ) of the interior transmission problem that are radially symmetric, i.e.
for all (x1, x2) ∈ F we demand

u((x1, x2)) = u(‖(x1, x2)‖) w((x1, x2)) = w(‖(x1, x2)‖) (5.1)

where ‖.‖ denotes the Euclidean norm in R2. With solutions like this it makes a
lot of sense to switch to polar coordinates, for details see [7, Section 206]. In short
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we have

x1 = r cosϕ x2 = r sinϕ ∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
(5.2)

and hence ‖(x1, x2)‖ = r. From the fact that F is a disc centered at the origin
of our coordinate sytem we see that if we move along any vector orthogonal to
it’s boundary, we move only with respect to r in polar coordinates while ϕ remains
fixed. This is important for the normal derivative in the boundary conditions. From
the above, (5.1) and (5.2) we can conclude that the conditions of Lemma 4.8 are
for any u,w fulfilling our demands equivalent to

∂2

∂r2
u+

1

r

∂

∂r
u+ λ(1 + q)u = 0 in (0, a) (5.3)

∂2

∂r2
w +

1

r

∂

∂r
w + λw = 0 in (0, a) (5.4)

u(a) = w(a)
∂

∂r
u|r=a =

∂

∂r
w|r=a (5.5)

Now we assume that u,w satisfy (5.3) - (5.5) and set

c :=
√
λ(1 + q) f(r) := u(

r

c
) g(r) := w(

r√
λ

)

whereas f and g are defined only on R1. To avoid confusion we use the notation

∂

∂r
u|r=y =: u′(y)

d

dr
f |r=y =: f ′(y)

for both u,w : F → R as well as for f, g : R→ R. f satisfies

y2f ′′(y) + yf ′(y) + y2f(y) =
y2

c2
u′′(

y

c
) +

y

c
u′(
y

c
) +

y2

c2
c2u(

y

c
)

=
y2

c2
(u′′(

y

c
) +

1
y
c

u′(
y

c
) + λ(1 + q)u(

y

c
)) = 0 (5.6)

whenever y
c
∈ (0, a) as one can see from (5.3).

Analogously g satisfies

y2g′′(y) + yg′(y) + y2g(y) =
y2

λ
w′′(

y√
λ

) +
y√
λ
u′(

y√
λ

) +
y2

λ
λu(

y√
λ

)

=
y2

λ
(u′′(

y√
λ

) +
1
y√
λ

u′(
y√
λ

) + λu(
y√
λ

)) = 0 (5.7)

whenever y√
λ
∈ (0, a).
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(5.6) and (5.7) are a special case of what we call Bessel’s differential equation.
From [13, §25] we can conclude that their solutions must be a linear combination
of the Bessel function of the first kind and order zero J0 and the Bessel function
of the second kind and order zero Y0. However Y0 has a singularity at zero and
thus while it might solve (5.6) and (5.7), it can not lead us to a function in C2(F ).
Hence every solution of (5.6) or (5.7) that can possibly lead to a solution of (5.3)
or (5.4) in C2(F ) must be of the form

f(y) = c1J0(y) g(y) = c2J0(y) (5.8)

where c1 and c2 are constants and J0 is the Bessel function of the first kind and
order zero defined through

J0(y) =
∞∑
k=0

(−1)k

(k!)2
(
y

2
)2k (5.9)

Because functions of the kind (5.8) solve (5.6) and (5.7) on all of R, they lead to
solutions of (5.3) and (5.4) by

u((x1, x2)) := c1J0(c‖(x1, x2)‖) w((x1, x2)) := c2J0(
√
λ‖(x1, x2)‖) (5.10)

as quickly thinking through our chain of thought in reverse reveals. We observe
that by above arguments (5.3) and (5.4) are fulfilled. Without going into details u
and w are also in C2(F ) because the power series in (5.9) converges for all y ∈ R
[4, section 3.4]. Hence the system (5.3) - (5.5) has a solution with functions defined
through (5.10) if and only if we can fulfill the boundary condition (5.5). That is
the case if and only if

c1J0(ca) = c2J0(
√
λa)

c1cJ
′
0(ca) = c2

√
λJ ′0(
√
λa)

⇐⇒
(
J0(ca) −J0(

√
λa)

cJ ′0(ca) −
√
λJ ′0(
√
λa)

)
︸ ︷︷ ︸

=:M

(
c1

c2

)
= 0

is fulfilled. An equivalent conditions for the existence of nontrivial c1, c2 such that
the above is true is that the matrix M does have determinant zero.

detM = −J0(ca)
√
λJ ′0(
√
λa) + cJ ′0(ca)J0(

√
λa) (5.11)

Putting our progress in the form of a Lemma we get the following one.

Lemma 5.1. Let F ⊆ R2 be an open disc of radius a > 0 and let q > 0 be a
constant. Then the interior transmission eigenvalues λ > 0 with eigenfunctions of
the form (5.10) are the zeros of detM as in (5.11).
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Figure 5.1: J0 and it’s derivative J ′0 = −J1
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We can get a first idea why detM must have zeros from the behaviour of J0 and
J ′0 as shown in Figure 5.1.

For a more profound analysis we need the following information on the asymp-
totical behaviour of these functions that can be deduced from [4, equation 3.59]
and Euler’s formula [6, §14].

J0(y) =

√
2

πy
cos(y − π

4
) +O(

1

y
3
2

) as y →∞

J ′0(y) =

√
2

πy
cos(y +

π

4
) +O(

1

y
3
2

) as y →∞

Here O denotes the Landau symbol and means that the residual term is bounded
by a constant times what’s inside the ‘O’. Recalling c =

√
λ(1 + q) and plugging

the asymptotics above into (5.11) we get

detM =− 2

πa

1
4
√

1 + q
cos(ca− π

4
) cos(

√
λa+

π

4
)

+
2

πa
4
√

1 + q cos(ca+
π

4
) cos(

√
λa− π

4
) +O(

1√
λ

) (5.12)

as λ→∞. From [6, §14] we can deduce the following equalities for all x, y ∈ R.

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y))

cos(x− π

2
) = − cos(x+

π

2
)

Using these on (5.12), for λ→∞ we can calculate the asymptotics

πa detM =− 1
4
√

(1 + q)
(cos(ca+

√
λa) + cos(ca−

√
λa− π

2
))

+ 4
√

1 + q(cos(ca+
√
λa) + cos(ca−

√
λa+

π

2
)) +O(

1√
λ

)

=

√
1 + q − 1
4
√

1 + q︸ ︷︷ ︸
=:A1

cos(ca+
√
λa) +

√
1 + q + 1
4
√

1 + q︸ ︷︷ ︸
=:A2

cos(ca−
√
λa+

π

2
) +O(

1√
λ

)

=A1 cos(
√
λ a(

√
1 + q + 1)︸ ︷︷ ︸

=:f1

) + A2 cos(
√
λ a(

√
1 + q − 1︸ ︷︷ ︸
=:f2

) +
π

2
) +O(

1√
λ

)

=A1 cos(
√
λf1) + A2 cos(

√
λf2 +

π

2
) +O(

1√
λ

) (5.13)
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We see A1 < A2 and f1 > f2. As such we can interpret the asyptotics to be an
overlay of a slowly oscillating part with big amplitude and a quickly oscillating part
with low amplitude. Because A1 < A2 we see from (5.13) that detM takes both
negative and positive values and hence it must have zeros by the intermediate value
theorem for continuous functions. This completes the proof of Lemma 4.8 because
now we know that for any q > 0 there exists some λ > 0 such that (5.3) - (5.5) has
a solution of the form (5.10).

5.2 An example

For the case where D is the unit disc and we have constant p = 0 and q = 0.5 we
examine the plot of detM from the previous section. Equation (5.13) motivates us
to regard detM not as a function of λ, but instead as a function of

√
λ.

0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

√
λ

 

 
det M

Figure 5.2: detM as a function of
√
λ while a = 1 and q = 0.5

Our earlier deduction about how it looks like is confirmed. In fact we observe
that the asymptotics are already clearly visible for ‘small’ λ.

60



5.3 The complex case

Still being in the case where D is the unit circle and p = 0, the following table
presents the first 6 positive zeros of detM for three different values of q. These are
the first 6 interior transmission eigenvalues with eigenfunctions of the form (5.10).

q = 0.2 q = 0.5 q = 1√
λ λ

√
λ λ

√
λ λ

x1 32.59 1062 13.71 187.9 7.375 54.39
x2 66.23 4387 28.38 805.6 15.58 242.6
x3 98.48 9698 41.80 1747 22.76 518.2
x4 132.1 17450 56.34 3174 29.92 895.1
x5 164.4 27020 69.90 4886 38.15 1455
x6 198.0 39190 83.44 6961 45.22 2044

Table 5.1: Zeros of detM , p = 0 and a = 1

5.3 The complex case

So far we have only considered the case where all variables defined in the introduc-
tion are real. What if we allow complex valued eigenfunctions u and w ? Then
our existence result Theorem 4.7 clearly stays valid as we can just regard our real
eigenfuctions as complex ones with zero imaginary part. Similarly we can see that
our countability result Theorem 3.8 is still valid. If we have complex u and w in
Definition 1.2, then both their real and imaginary parts also fulfill every demand
except possibly the non-triviality. However they can not both be trivial because
then u,w would also be trivial. So there can not be an interior transmission eigen-
value with complex eigenfunctions u,w that does not also have real eigenfunctions
and Theorem 3.8 stays valid.

We could also allow for a complex index of refraction. In this case our analysis
does not help us, but [4, Theorem 8.12] does state that there exist no interior
transmission eigenvalues if the index of refraction has imaginary part unequal to
zero. Note that [4] only accepts strong solutions and p = 0 though. For a definite
answer to the question whether the theorem still holds true in our setting the reader
has to be referred to the name of the chapter.

Finally demanding simply λ ∈ C instead of λ > 0 is also an option. We will
examine this in the case of the example from the previous section, i.e. p = 0, q = 1

2
,

D is the unit circle and we only search for eigenfunctions of the form (5.10). First
of all J0 is an even function as one can see from (5.9). Hence equation (5.13) is also
valid for λ → −∞ and we expect a similar behaviour of it’s zeros on the negative
real axis as on the positive real axis. λ = 0 is clearly a zero of detM , but is an
uninteresting case anyway. So what of λ ∈ C\R ? If we find a nonreal zero of
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Figure 5.3: |detM | as a function of k while a = 1 and q = 0.5

detM , we can proceed as we did in the real case. Without going into the details
how (5.10) defines complex solutions, at this point we simply examine detM . We
look at (5.10) as well as (5.11) and see that we can formally regard detM as a
function of k :=

√
λ. If k is not real, then neither is k2 and the functions defined

through (5.11) solve (5.3),(5.4) with k2 instead of λ.

Figure 5.3 shows conspicuous behavior of |detM | in the area where the imaginary
part of k is between −1 and −1.5. Because detM is a smooth function, the dents
in |detM | near zero suggest that detM might indeed have a zero at those points.
In Figure 5.4 we can see one of the critical areas magnified and in Figure 5.5 the
same area with contour lines for Im(detM) = 0 and Re(detM) = 0 as data.

We can clearly see three intersections of the contour lines of Figure 5.5. At
these points we have Im(detM) = Re(detM) = 0 and hence detM = 0. So our
suspicion that for these values of k we can define nontrivial functions satisfying our
boundary conditions through (5.11) remains. An analytical proof will however not
be given here.
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Figure 5.4: |detM | as a function of k while a = 1 and q = 0.5
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Figure 5.5: Contour lines Re(detM(k)) = 0 and Im(detM(k)) = 0
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5.4 Opportunities for further studies

Regarding the distribution of interior transmission eigenvalues we have shown that
at least one exists and the only possible accumulation point is infinity. Equation
(5.13) does however suggest that for constant q and p = 0 there are in fact infinitely
many of them. [5, Theorem 2] furthermore states that in R3 this is also true for
spherically stratified q. A natural question in this context is whether this holds true
for other sorts of refraction indices, too. Another interesting aspect to study would
be how they are precisely distributed. [3] gives a result regarding upper and lower
bounds for the smallest eigenvalue. Additionally one could strive to extend that
to the kth eigenvalue or search for asymptotic behaviour of the distance between
eigenvalues if there exist infinitely many.

On a more personal level the logical next step in my studies would be to better
understand the relevance of interior transmission eigenvalues in applications. [4]
states that their existence poses problems for the numerical implementation of
reconstruction methods for unknown index of refraction. Studying further in this
direction would then lead to the question how we can use our hard-earned results
Theorem 3.8 and Theorem 4.7 to overcome these difficulties.
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